
Syllabus for the Course Information Theory and Coding

• Review of probability theory
• Entropy
• Mutual information
• Data compression
• Huffman coding
• Asymptotic equipartition property
• Universal source coding
• Channel capacity
• Differential entropy
• Block codes and Convolutional codes.

1

Information Theory and
Coding

Pavan S. Nuggehalli
CEDT, IISc, Bangalore

Pavan S. Nuggehalli ITC/V1/2005 2 of 3

Course Outline - I

Information theory is concerned with the fundamental limits of communication.

What is the ultimate limit to data compression? e.g. how many bits are required
to represent a music source.

What is the ultimate limit of reliable communication over a noisy channel, e.g.
how many bits can be sent in one second over a telephone line.

Pavan S. Nuggehalli ITC/V1/2005 3 of 3

Course Outline - II

Coding theory is concerned with practical techniques to realize the limits
specified by information theory

Source coding converts source output to bits.
Source output can be voice, video, text, sensor output …

Channel coding adds extra bits to data transmitted over the channel
This redundancy helps combat the errors introduced in transmitted bits due
to channel noise

1

Information Theory and
Coding

Pavan S. Nuggehalli
CEDT, IISc, Bangalore

Pavan S. Nuggehalli ITC/V1/2005 2 of 4

Communication System Block Diagram

Source Source
Encoder

Channel
Encoder

Modulator

Channel

Demodu
-lator

Channel
Decoder

Source
Decoder

Sink

Noise

Source Coding Channel Coding

Modulation converts bits into coding analog waveforms suitable for transmission over physical
channels. We will not discuss modulation in any detail in this course.

Pavan S. Nuggehalli ITC/V1/2005 3 of 4

What is Information?

Sources can generate “information” in several formats

sequence of symbols such as letters from the English or Kannada alphabet,
binary symbols from a computer file.

analog waveforms such as voice and video signals.

Key insight : Source output is a random process
* This fact was not appreciated before Claude Shannon developed information
theory in 1948

Pavan S. Nuggehalli ITC/V1/2005 4 of 4

Randomness

Why should source output be modeled as random?

Suppose not x. Then source output will be a known determinative process.
x simply reproduces this process at the risk without bothering to communicate?

The number of bits required to describe source output depends on the
probability distribution of the source, not the actual values of possible outputs.

Information Theory and Coding

Lecture 1

Pavan Nuggehalli Probability Review

Origin in gambling
Laplace - combinatorial counting, circular discrete geometric probability - continuum

A N Kolmogorous 1933 Berlin

Notion of an experiment

Let Ω be the set of all possible outcomes. This set is called the sample set.

Let A be a collection of subsets of Ω with some special properties. A is then a col-
lection of events (Ω,A) are jointly referred to as the sample space.

Then a probability model/space is a triplet (Ω,A, P) where P satisfies the following
properties

1 Non negativity : P (A) ≥ 0 ∀A ǫ A

2 Additivity : If {An, n ≥ 1} are disjoint events in A,

then P (U∞
n=1An) =

∞
∑

n=1

P (An)

3 Bounded : P (Ω) = 1

* Example : Ω = {T, H} A = {φ, {T, H}, {T}, {H}}

P ({H}) = 0.5

When Ω is discrete (finite or countable) A = lP (Ω), where lP is the power set. When Ω
takes values from a continiuum, A is a much smaller set. We are going to hand-wave out
of that mess. Need this for consistency.

* Note that we have not said anything about how events are assigned probabilities.
That is the engineering aspect. The theory can guide in assigning these probabilities,
but is not overly concerned with how that is done.

There are many consequences

1-1

1. P (A⊂) = 1 − P (A) ⇒ P (φ) = 0

2. P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

3. Inclusion - Exclusion principle :

If A1, A2, . . . , An are events, then

P (∪n
j=1Aj) =

n
∑

j=1
P (Aj) −

∑

1≤i<j≤n
P (Ai ∩ Aj)

+
∑

1≤i<j<k≤n
P (Ai ∩ Aj ∩ Ak)..(−1)nP (A1 ∩ A2 . . . ∩ An)

Can be proved using induction

4. Monotonivity : A ⊂ B ⇒ (P)A ≤ P (B)

5. Continuity : First define limits : A = ∪An or A = ∩An

(a) IfAn ↑ A, then P (An) ↑ P (A)

A1 ⊂ A2 . . . ⊂ A, lim
n→∞

P (An) = P (lim
n→∞

An)

fcont ⇒ lim
xn→x

f(Xn) = f(lim
xn→x

Xn) = f(x)

(b) An ↓ A, then P (An) ↓ P (A)

Proof :

a) A1 ⊂ A2 . . . ⊂ An

B1 = A1, B2 = A2\A1 = A2 ∩ A⊂
1

B3 = A3\A2

Bn is a sequence of disjoint ”annular rings”. ∪n
k=1Bn = An

∪∞
n=1Bn = ∪∞

n=1An = A

By additivity of P

P (A) = P (∪∞
n=1Bn) =

∞
∑

n=1

P (Bn) = lim
n→∞

n
∑

k=1

P (Bn)

= lim
n→∞

P (∪n
k=1Bk) = lim

n→∞
P (An)

We have, P (A) = lim
n→∞

p(An)

1-2

b)

A1 ⊃ A2 ⊃ An . . . ⊃ A A ⊂ B A ⊃ B

A⊂ ⊃ B⊂ A⊂ ⊂ B⊂

A⊂
1 ⊂ A⊂

z . . . ⊂ A⊂

P (A⊂) = lim
n→∞

P (A⊂
n)

⇒ 1 − P (A) = lim
n→∞

1 − P (An) = 1 − lim
n→∞

P (An)

⇒ P (A) = lim
n→∞

P (An)

Limits of sets. Let An ⊂ A be a sequence of events

infk≥nAk = ∩∞
k=nAk supk≥nAk = ∪∞

k=nAk

lim inf
n→∞

An = ∪∞
n=1 ∩∞

k=n Ak lim sup
n→∞

An = ∩∞
n=1 ∪∞

k=n Ak

If lim inf
n→∞

An = lim sup
n→∞

An = A, then we say An converges to A

Some useful interpretations :

lim sup An = {W :
∑

1An
(W) = ∞}

= {W : WǫAnk
, K = 1, 2, . . .}for some sequencesnk

= {An1 : 0}
lim inf An = {W : A.WǫAn}for all n except a finite number

= {W :
∑

1⊂An
(W) < ∞}

= {W : WǫAn ∀n ≥ no(W)}

Borel Cantelli Lemma : Let {An} be a sequence of events.

If
∞
∑

n=1
P (An) < ∞ then P (An1 : 0) = P (lim sup An) = 0

P (An1 : 0) = P (lim
n→∞

∪j≥nAj)

=
∑

n

P (An) ≤ ∞

= lim
n→∞

P (∪j≥nAj) ≤ lim
n→∞

∞
∑

j=n

P (Aj) = 0

1-3

Converse to B-C Lemma

If {An} are independent events such that
∑

n
P (An) = ∞, then P{An1 : 0} = 1

P (An1 : 0) = P (lim
n→∞

∪j≥nAj)

= lim
n→∞

P (∪j≥nAj)

= lim
n→∞

(1 − P (∩j≥nA
⊂
j))

= 1 − lim
n→∞

lim
m→∞

Πm
k=n(1 − P (Ak)

1 − P (Ak) ≤ e−P (Ak)
m

therefore lim
m→∞

Πm
k=n(1 − P (Ak)) ≤ lim

m→∞
Πm

k=ne−P (Ak)

= lim
m→∞

e
−

m
∑

k=n

P (Ak)

= e
−
∞
∑

k=n

P (Ak)

= e−∞ = 0

Random Variable :

Consider a random experiment with the sample space (Ω,A). A random variable is a
function that assigns a real number to each outcome in Ω.

X : Ω −→ R

In addition for any interval (a, b) we want X−1((a, b)) ǫ A. This is an technical
condition we are stating merely for completeness.

Such a function is called Borel measurable cumulative.

The cumulative distribution function for a random variable X is defined as

F (x) = P (X ≤ x)∼, P ({W1ǫΩX(W) ≤ x}), XǫR

1-4

A random variable is said to discrete if it can take only a finite or countable/denumerable.
The probability mass function (PMF) gives the probability that X will take a particular
value.

PX(x) = P (X = x)

We have F (x) =
∑

y≤x
Px(y)

A random variable is said to be continuous if there exists a function f(x), called the
probability distribution function such that

F (x) = P (X ≤ x) =

x
∫

−∞

f(y)dy

differentiating, we get f(x) = d
dx

F (x)

The distribution function Fx(x) satisfies the following properties

1) F (x) ≥ 0
2) F (x) is right contininous lim

xn↓x
F (x) = F (x)

3) F (−∞) = 0, F (+∞) = 1

Let Ak = {W : X ≤ xn}, A = {W : X ≤ x}

Clearly A1 ⊃ A2 ⊃ A4 ⊃ An ⊃ A LetA = ∩∞
k=1Ak

Then A = {W : X(W) ≤ x}

We have lim
n→∞

P (An) = lim
xn↓x

F (xn)

By continuity of P, P (lim
n→∞

An) = P (A) = F (x)

Independence

Suppose (Ω,A, P) is a probability space. Events A, B ǫ A are independent if

P (A ∩ B) = P (A).P (B)

1-5

In general events A1, A2, . . .An are said to be independent if

P (∩iǫIAi) = ΠiǫIP (Ai)

for all finite I C {1, . . . , n}

Note that pairwise independence does not imply independence as defined above.
Let Ω = {1, 2, 3, 4}, each equally mobable let A1 = {1, 2}A2 = {1, 3} and A3 = {1, 4}.
Then only two are independent.

A finite collection of random variables X1, . . . , Xk is independent if

P (X1 ≤ x1, . . . , Xk ≤ xk) = Πk
i=1P (Xi ≤ xi) ∀ xi ǫ R, 1 ≤ i ≤ k

Independence is a key notion in probability. It is a technical condition, don’t rely on
intuition.

Conditional Probability

The probability of event A occuring, given that an event B has occured is given by

P (A|B) =
P (A ∩ B)

P (B)
, P (B) > 0

If A and B are independent, then

P (A|B) =
P (A)P (B)

P (B)
= P (A) as expected

In general P (∩n
i=1A1) = P (A1)P (A2|A1) P (An|A1, A2, . . . , An−1)

Expected Value

The expectation, average or mean of a random variable is given by

EX =

=
∑

xP (X = x) Xis discreet
∞
∫

−∞
xf(x)dx continuous

In general EX =
∞
∫

x=−∞
xdF (x) This has a well defined meaning which reduces to the

above two special cases when X is discrete or continuous but we will not explore this
aspect any further.

1-6

We can also talk of expected value of a function

Eh(X) =

∞
∫

−∞

h(x)dF (x)

Mean is the first moment. The nth moment is given by

EXn =
∞
∫

−∞
xndF (x) if it exists

V arX = E(X − EX)2 = EX2 − (EX)2
√

V arX is called the std deviation

Conditional Expectation :

If X and Y are discrete, the conditional p.m.f. of X given Y is defined as

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
P (Y = y) > 0

The conditional distribution of X given Y=y is defined as F (x|y) = P (X ≤ x|Y = y)
and the conditional expectation is given by

E[X|Y = y] =
∑

xP (X = x|Y = y)

If X and Y are continuous, we define the conditional pdf of X given Y as

fX(Y) (x|y) =
f(x, y)

f(y)

The conditional cumulative distribution in cdf is given by

FX|Y (x|y) =

x
∫

−∞

fX|Y (x|y)dx

Conditional mean is given by

E[X|Y = y] =
∫

x fX|Y (x|y)dx

It is also possible to define conditional expectations functions of random variables in a
similar fashion.

1-7

Important property If X & Y are rv.

EX = E[EX|Y] =
∫

E(X|Y = y)dFY (y)

Markov Inequality :

Suppose X ≥ 0. Then for any a > 0

P (X ≥ a) ≤ EX
a

EX =
a
∫

o
xdF (x) +

∞
∫

a
xdF (x)

∞
∫

a
adF (x) = a.p(X ≥ a)

P (X ≥ a) ≤ EX
a

Chebyshev’s inequality :

P (|X − EX| ≥ ǫ) ≤ V ar(X)
ǫ2

Take Y = |X − a|

P (|X − a| ≥ ǫ) = P ((X − a)2 ≥ ǫ2) ≤ E(X−a)2

ǫ2

The weak law of Large Number

Let X1, X2, . . . be a sequence of independent and identically distributed random vari-
ables with mean N and finite variance σ2

Let Sn =
n
∑

k=1

n

Xk

Then P (|Sn − N | ≥ δ|) ⇒ 0 as n ⇒ ∞ ∀δ

Take any δ > 0

P (|Sn − N | ≥ δ) ≤ V arSn

δ2

= 1
n2

nσ2

δ2 = 1
n

σ2

δ2

1-8

lim
n→∞

P (|SnN | ≥ δ) −→ 0

Since δ rvar pushed arbitrarily

lim
n→∞

P (|Sn − N | ≥ 0) = 0

The above result holds even when σ2 is infinite as long as mean is finite.

Find out about how L-S work and also about WLLN

We say Sn ⇒ N in probability

1-9

Information Theory and Coding

Lecture 2

Pavan Nuggehalli Entropy

The entropy H(X) of a discrete random variable is given by

H(X) =
∑

xǫX

P (x) log
1

P (x)

= −
∑

xǫX

P (x) logP (x)

= E log
1

P (X)

log 1
P (X)

is called the self-information of X. Entropy is the expected value of self informa-
tion.

Properties :

1. H(X) ≥ 0

P (X) ≤ 1 ⇒ 1
P (X)

≥ 1 ⇒ log 1
P (X)

≥ 0

2. LetHa(X) = Eloga
1

P (X)

Then Ha(X) = (loga2).H(X)

3. Let |X | = M Then H(X) ≤ logM

H(x) − logM =
∑

xǫX

P (x) log
1

P (x)
− logM

=
∑

xǫX

P (x) log
1

P (x)
−
∑

xǫX

P (x) logM

=
∑

xǫX

P (x) log
1

MP (x)

= E log
1

MP (x)

Jensens′ ≤ logE

(

1

MP (x)

)

= log
∑

P (x)
1

MP (x)
= 0

2-1

therefore H(X) ≤ logM When P (x) = 1
M

∀ x ǫ X

H(X) =
∑

xσX

1
M

logM = logM

4. H(X) = 0 ⇒ X is a constant

Example : X = {0, 1} P (X = 1) = P, P (X = 0) = 1 − P

H(X) = P log 1
P

+ (1 − P) log 1
1−P

= H(P)(the binary entropy function)
We can easily extend the definition of entropy to multiple random variables. For

example, let Z = (X, Y) where X and Y are random variables.

Definition : The joint entropy H(X,Y) with joint distribution P(x,y) is given by

H(X, Y) = +
∑

xǫX

∑

yǫY

P (x, y)log

[

1

P (x, y)

]

= E log
1

P (X, Y)

If X and Y are independent, then

H(X, Y) =
∑

xǫX

∑

yǫY

P (x).P (y) log
1

P (x), P (y)

=
∑

xǫX

∑

yǫY

P (x).P (y) log
1

P (x)
+
∑

xǫX

∑

yǫY

P (x)P (y) log
1

P (y)

=
∑

yǫY

P (y)H(X) +
∑

xǫX

P (x)H(Y)

= H(X) + H(Y)

In general, given X1, . . . , Xn. i.i.d. random variables,

H(X1, . . . , Xn) =
∑

i=1n

H(Xi)

We showed earlier that for optimal coding

H(X) ≤ L− < H(X) + 1

2-2

What happens if we encode blocks of symbols?

Lets take n symbols at a time

Xn = (X1, . . . , Xn) Let L−n be the optimal code

H(X1, . . . , Xn) ≤ L−n < H(X1, . . . , Xn) + 1

H(X1, . . . , Xn) =
∑

H(Xi) = nH(X)

H(X) ≤ L−n ≤ nH(X) + 1

H(X) ≤ L−n

n
≤ H(X) + 1

n

Therefore, by encoding a block of source symbols at a time, we can get as near to
the entropy bound as required.

2-3

Information Theory and Coding

Lecture 3

Pavan Nuggehalli Asymptotic Equipartition Property

The Asymptotic Equipartition Property is a manifestation of the weak law of large num-
bers.

Given a discrete memoryless source, the number of strings of length n = |X |n. The AEP
asserts that there exists a typical set, whose cumulative probability is almost 1. There
are around 2nh(X) strings in this typical set and each has probability around 2−nH(X)

”Almost all events are almost equally surprising.”

Theorem : Suppose X1, X2, . . . are iid with distribution p(x)

Then − 1
n

log P (X1, . . . , Xn) → H(X) in probability

Proof : Let Yk = log
[

1
P (Xk)

]

. Then Yk are iid and EYk = H(X)

Let Sn = 1
n

n
∑

k=1
Yk. By WLLN Sn → H(x) in probability

But Sn = 1
n

n
∑

k=1
log 1

P (Xk)
= −

n
∑

k=1

log

n
P (Xk)

= − 1
n

log(P (X1, . . . , Xn))

Definition : The typical set An
ǫ is the set of sequences xn = (x1, . . . , xn) ǫ X n such

that 2−n(H(X)+ǫ) ≤ P (x1, . . . , xn) ≤ 2−n(H(X)−ǫ)

Theorem :

a) If (x1, . . . , xn) ǫ An
ǫ , then

H(X) − ǫ ≤ − 1
n

logP (x1, . . . , xn) ≤ H(X) + ǫ

b) Pr(An
ǫ) > 1 − ǫ for large enough n

c) |An
ǫ | ≤ 2n(H(X)+ǫ)

d) |An
ǫ | ≥ (1 − ǫ) 2n(H(X)−ǫ) for large enough n

Remark

1. Each string in An
ǫ is approximately equiprobable

2. The typical set occur with probability 1

3. The size of the typical set is roughly 2nH(X)

3-1

Proof :

a) Follows from the definition

b) AEP

⇒ − 1
n

log P (X1, . . . , Xn) → H(X) in prob

Pr
[

| − 1
n

log P (X1, . . . , Xn) − H(X)| < ǫ
]

> 1 − δ for large enough n

Take δ = ǫ1 Pr(An
ǫ) > 1 − δ

c)

1 =
∑

xnǫXn

P (xn)

≥
∑

xnǫAn
ǫ

P (xn)

≥
∑

xnǫAn
ǫ

2−n(H(X)+ǫ)

= |An
ǫ | . 2−n(H(X)+ǫ) ⇒ |An

ǫ | ≤ 2n(H(X)+ǫ)

d)

Pv(An
ǫ) > 1 − ǫ

⇒ 1 − ǫ < Pv(An
ǫ)

=
∑

xnǫAn
ǫ

Pv(xn)

≤
∑

xnǫAn
ǫ

2−n(H(X)−ǫ)

= |An
ǫ | . 2−n(H(X)−ǫ)

|An
ǫ | ≥ (1 − ǫ) . 2−n(H(X)−ǫ)

strings of length n = |X |n

typical strings of length n ∼= 2nH(X)

3-2

lim 2nH(X)

|X|n

= lim 2−n(log|X|−H(X)) → 0
One of the consequences of AEP is that it provides a method for optimal coding.

This has more theoretical than practical significance.

Divide all strings of length n into An
ǫ and An⊂

ǫ

We know that |An
ǫ | ≤ 2n(H(X)+ǫ)

Each sequence in An
ǫ is represented by its index in the set. Instead of transmitting

the string, we can transmit its index.

#bits required = ⌈log(|An
ǫ |)⌉ < n(H(X) + ǫ) + 1

Prefix each sequence by a 0, so that the decoder knows that what follows is an in-
dex number.

#bits ≤ n(H(X) + ǫ) + 2

For Xn ǫ An⊂

ǫ ,

#bits required = nlog|X | + 1 + 1

Let l(xn) be the length of the codeword corresponding to xn. Assume n is large enough
that Pv(An

ǫ) > 1 − ǫ

El(xn) =
∑

xn

P (xn)l(xn)

=
∑

xnǫAn
ǫ

P (xn)l(xn) +
∑

xnǫAn⊂

ǫ

P (xn)l(xn)

≤
∑

xn+An
ǫ

P (xn)[(nH + ǫ) + 2] +
∑

P (xn)(n log|X| + 2)

= Pv(An
ǫ) . (n(H + ǫ) + 2) + Pv(An⊂

ǫ) . (n log|X| + 2)

≤ n(H + ǫ) + 2 + ǫ.n log|X|

= n(H + ǫ1) ǫ1 = ǫ + ǫ log|X| + 2

n

3-3

Theorem : For a DMS, there exists a UD code which satisfies

E
(

1
n

l(xn)
)

≤ H(X) + ǫ for n sufficiently large

3-4

Information Theory and Coding

Lecture 4

Pavan Nuggehalli Data Compression

The conditional entropy of a random variable Y with respect to a random variable X is
defined as

H(Y |X) =
∑

xǫX

P (x)H(Y |X = x)

=
∑

xǫX

P (x)
∑

yǫY

P (y|x)log
1

P (y|x)

=
∑

xǫX

∑

yǫY

P (x, y)log
1

P (y|x)

= E
1

logP (y|x)

In general, suppose X = (X1, . . . , Xn) Y = (Y1, . . . , Ym)

Then H(X|Y) = E 1
logP (Y |X)

Theorem : (Chain Rule)

H(XY) = H(X) + H(Y |X)

H(X, Y) = −
∑

xǫX

∑

yǫY

P (x, y)logP (x, y)

= −
∑

xǫX

∑

yǫY

P (x, y)logP (x).P (y|x)

= −
∑

x

∑

y

P (x, y)logP (x)−
∑

xǫX

∑

yǫY

P (x, y)log(y|x)

= −
∑

x

P (x)logP (x) −
∑

xǫX

∑

yǫY

P (x, y)log(y|x)

= H(X) + H(Y |X)

Corollary :

1)

H(X, Y |Z) = H(X|Z) + H(Y |X, Z)

= E
1

logP (y|x, z)

4-1

2)

H(X1, . . . , Xn) =
n

∑

k=1

H(Xk|Xk−1, . . . , X1)

H(X1, X2) = H(X1) + H(X2|X1)

H(X1, X2, X3) = H(X1) + H(X2, X3|X1)

= H(X1) + H(X2|X1) + H(X3|X1, X2)

3) H(Y) ≤ H(Y |X)−

Stationary Process : A stochastic process is said to be stationery if the joint dis-
tribution of any subset of the sequence of random variables is invariant with respect to
shifts in the time index.

Pr(X1 = x1, . . . , Xn = xn) = Pr(X1+t = x1, . . . , Xn+t = xn)

∀ t ǫ Z and all x1, . . . , xn ǫ X

Remark : H(Xn|Xn−1) = H(X2|X1)

Entropy Rate : The entropy rate of a stationery stochastic process is given by

H = lim
n→∞

1

n
H(X1, . . . , Xn)

Theorem : For a stationery stochastic process, H exists and further satisfies

H = lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
H(Xn|Xn−1, . . . , X1)

Proof : We will first show that lim H(Xn|Xn−1, . . .X1) exists and then show that

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
H(Xn|Xn−1, . . . , X1)

4-2

Suppose limn→∞ xn = x. Then we mean for any ǫ > 0, there exists a number Nǫ such that

|xn − x| < ǫ ∀n ≥ Nǫ

Theorem : Suppose xn is a bounded monotonically decreasing sequence, then lim
n→∞

xn

exists.

H(Xn+1|X1, . . . , Xn) ≤ H(Xn+1|X2, . . . , Xn)

= H(Xn|X1, . . . , Xn−1)by stationarity

⇒ H(Xn|X1, . . . , Xn−1) is monotonically decreasing with n

0 ≤ H(Xn|X1, . . . , Xn−1) ≤ H(Xn) ≤ log|X |

Cesaro mean

Theorem : If an → a, then bn = 1
n

n
∑

k=1
ak → a

WTS. ∀ǫ > 0, ∃Nǫ s.t. |bn − a| < ǫ ∀n ≥ Nǫ

We know an → a ∃N ǫ

2
s.t n ≥ N ǫ

2

|an − a| ≤ ǫ

2

|bn − a| =

∣

∣

∣

∣

∣

1

n

n
∑

k=1

(ak − a)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

k=1

|ak − a|

≤ 1

n

Nǫ|Z
∑

k=1

|ak − a| + n − N(ǫ)

n

ǫ

Z

≤ 1

n

Nǫ|Z
∑

k=1

|ak − a| + ǫ

Z

Choose n large enough that the first term is less than ǫ
Z

|bn − a| ≤ ǫ

Z
+

ǫ

Z
= ǫ ∀n ≥ N∗

ǫ

4-3

Now we will show that

lim H(Xn|X1, . . . , Xn−1) → lim
1

n
H(X1, . . . , Xn)

H(X1, . . . , Xn)

n
=

1

n

n
∑

k=1

H(X1|Xk−1, . . . , X1)

↓

lim
H(X1, . . . , Xn)

n
= lim

n→∞
H(Xn|X1, . . . , Xn−1)

Why do we care about entropy rate H ? Because AǫP holds for all stationary ergodic
process,

−1

n
logP (X1, . . . , Xn) → H in prob

This can be used to show that the entropy rate is the minimum number of bits re-
quired for uniquely decodable lossless compression.

Universal data/source coding/compression are a class of source coding algorithms which
operate without knowledge of source statistics. In this course, we will consider Lempel.
Ziv compression algorithms which are very popular Winup & Gup use version of these
algorithms. Lempel and Ziv developed two version LZ78 which uses an adaptive dictio-
nary and LZ77 which employs a sliding window. We will first describe the algorithm and
then show why it is so good.

Assume you are given a sequence of symbols x1, x2 . . . to encode. The algorithm main-
tains a window of the W most recently encoded source symbols. The window size is fairly
large ≃ 210 − 217 and a power of 2. Complexity and performance increases with W.

a) Encode the first W letters without compression. If |X| = M , this will require
⌈WlogM⌉ bits. This gets amortized over time over all symbols so we are not
worried about this overhead.

b) Set the pointer P to W

c) Find the largest n such that

xP=n
P+1 = xP−u−1+n

P−u for some u, 0 ≤ u ≤ W − 1

Set n = 1 if no match exists for n ≥ 1

4-4

d) Encode n into a prefix free code word. The particular code here is called the unary
binary code. n is encoded into the binary representation of n preceded by ⌊logn⌋
zeros

1 : ⌊log1⌋ = 0 1

2 : ⌊log2⌋ = 1 010

3 : ⌊log3⌋ = 1 011

4 : ⌊log4⌋ = 2 00100

e) If n > 1 encode u using ⌈logW ⌉ bits. If n = 1 encode xp+1 using ⌈logM⌉ bits.

f) Set P = P + n; update window and iterate.

Let R(N) be the expected number of bits required to code N symbols

Then lim
W→∞

lim
N→∞

R(N)
N

= H(X)

”Baby LZ- algorithm”

Assume you have been given a data sequence of W + N symbols where W = 2n∗(H+2ǫ),
where H is the entropy rate of the source. n∗ divides N |X| = M is a power of 2.

Compression Algorithm

If there is a match of n∗ symbols, send the index in the window using logW (= n∗(H+2ǫ))
bits. Else send the symbols uncompressed.

Note : No need to encode n, performance sub optimal compared to LZ more compression
n needs only log n bits.

Yk = # bits generated by the Kth segment

#bits sent =
N/n∗

∑

k=1
Yk

Yk = logW if match

= n∗logM if no match

E(#bits sent) =
N/n∗

∑

k=1
EYk

= N
n∗

(P (match).logW + P (No match).n∗logM)

E(#bits sent)
N

= P (match). logW

n∗
+ P (no match)logM

claim P (no match) → 0 as n∗ → ∞

4-5

lim
n∗→∞

E(#bits sent)
N

= logW

n∗
= n∗(H+2ǫ)

n∗
= H + 2ǫ

Let S be the minimum number of backward shifts required to find a match for n∗ symbols

Fact : E(S|XP+1, XP+2, . . . , XP+n∗) = 1
P (XP+1,...,X

P+n∗
)

for a stationery ergodic source. This result is due to kac.

By Markov inequality

P (No match|XP+n∗

P+1) = P (S > W |XP+n∗

P+1)

=
ES

W
=

1

P (XP+n∗

P+1).W

P (No match) = P (S > W)

=
∑

P (XP+n∗

P+1)P (S > W |XP+n∗

P+1)

=
∑

P (n∗)P (S > W |Xn∗

)

=
∑

Xn∗

ǫAn∗

ǫ

P (Xn∗

)P (S > W |Xn∗

) +
∑

Xn∗

ǫAn∗⊂

ǫ

P (Xn∗

)(S > W |Xn∗

)

︸ ︷︷ ︸

≤ P (An∗⊂

ǫ) → 0 as n∗ → ∞

Xn∗

ǫ An∗

ǫ ⇒ P (Xn∗

) ≥ 2−n∗(H+ǫ)

= therefore
1

P (Xn∗)
≤ 2n∗(H+ǫ)

≤
∑

Xn∗

ǫAn∗

ǫ

P (Xn∗

).
1

P (Xn∗).W

≤ 2n∗(H+ǫ)

W

∑

Xn∗

ǫAn∗

ǫ

P (Xn∗

) =
2n∗(H+ǫ)

W
.P (An∗

ǫ)

≤ 2n∗(H+ǫ)

W
= 2n∗(H+ǫ−H−2ǫ) = 2n∗(−ǫ) → 0 as n∗ → ∞

4-6

4-7

Information Theory and Coding

Lecture 5

Pavan Nuggehalli Channel Coding

Source coding deals with representing information as concisely as possible. Channel cod-
ing is concerned with the ”reliable” ”transfer” of information. The purpose of channel
coding is to add redundancy in a controlled manner to ”manage” error. One simple
approach is that of repetition coding wherein you repeat the same symbol for a fixed
(usually odd) number of time. This turns out to be very wasteful in terms of band-
width and power. In this course we will study linear block codes. We shall see that
sophisticated linear block codes can do considerably better than repetition. Good LBC
have been devised using the powerful tools of modern algebra. This algebraic framework
also aids the design of encoders and decoders. We will spend some time learning just
enough algebra to get a somewhat deep appreciation of modern coding theory. In this
introductory lecture, I want to produce a bird’s eye view of channel coding.

Channel coding is employed in almost all communication and storage applications. Ex-
amples include phone modems, satellite communications, memory modules, magnetic
disks and tapes, CDs, DVD’s etc.

Digital Foundation : Tornado codes Reliable data transmission over the Internet
Reliable DSM VLSI circuits

There are tow modes of error control.

Error detection → Ethernet CRC
Error correction → CD

Errors can be of various types : Random or Bursty

There are two basic kinds of codes : Block codes and Trellis codes

This course : Linear Block codes

Elementary block coding concepts
Definition : An alphabet is a discrete set of symbols
Examples : Binary alphabet{0, 1}

Ternary alphabet{0, 1, 2}
Letters{a, . . . , z}

Eventually these symbols will be mapped by the modulator into analog wave forms and
transmitted. We will not worry about that part now.

In a(n, k) block code, the incoming data source is divided into blocks of k symbols.

5-1

Each block of k symbols called a dataword is used to generate a block of n symbols called
a codeword. (n − k) redundant bits.

Example : (3, 1) binary repetition code
0 → 000 n = 3, k = 1
1 → 111

Definition : A block code G of blocklength n over an alphabet X is a non empty set
of n-tuples of symbols from X . These n-tuples are called codewords.

The rate of the code with M symbols is given by

R =
1

n
logq M

Let us assume |X | = q. Codewords are generated by encoding messages of k symbols.

messages = qk = |G|

Rate of code = k
n

Example : Single Parity check code SPC code
Dataword : 010
Codeword : 0101
k = 3, n = 4, Rate = 3

4

This code can detect single errors.

Ex : All odd number of errors can be detected. All even number of errors go undetected
Ex : Suppose errors occur with prob P. What is the probability that error detection fails?

Hamming distance : The Hamming distance d(x, y) between two q-ary sequences
x and y is the number of places in which x and y differ.

Example:

x = 10111

y = 01011

d(x, y) = 1 + 1 + 1 = 3

Intuitively, we want to choose a set of codewords for which the Hamming distance
between each other is large as this will make it harder to confuse a corrupted codeword
with some other codeword.

5-2

Hamming distance satisfies the conditions for a metric namely

1. d(x, y) ≥ 0 with equality if x = y

2. d(x, y) = d(y, x) symmetry

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Minimum Hamming distance of a block code is the distance of the two closest code-
words

dmin = min d(ci, cj)

ci, cj ǫ G

= i 6= j

An (n, k) block code with dmin = d is often referred to as an (n, k, d) block code.

Some simple consequences of dmin

1 An (n, k, d) block code can always detect up to d-1 errors
Suppose codeword c was transmitted and r was received (The received word is often
called a senseword.)

The error weight = # symbols changed / corrupted

= d(c, r)

If d(c, r) < d, then r cannot be a codeword. Otherwise c and r would be two
codewords whose distance is less than the minimum distance.

Note :

(a) Error detection 6= Error correction
d(c1, r) < d d(c2, r) < d

(b) This is the guaranteed error detecting ability. In practise, errors can be de-
tected even if the error weight exceeds d. e.g. SPC detects all odd patterns of
errors.

2 An (n, k, d) block code can correct up to
t = ⌊d−1

2
⌋ errors

5-3

Proof : Suppose we detect using nearest neighbor decoding i.e. given a senseword r, we
choose the transmitted codeword to be

c^ = argnum d(r, c)

= c ǫ G

A Hamming sphere of radius r centered at an n tuple c is the set of all n tuples,
c
′

satisfying d(c, c
′

) ≤ r

t = ⌊dmin − 1

2
⌋ ⇒ dmin ≥ 2t = 1

Therefore, Hamming spheres of radius t are non-intersecting. When ≤ t errors occur,
the decoder can unambiguously decide which codeword was transmitted.

Singleton Bound : For an (n, k) block code n − k ≥ dmin − 1

Proof :

Remove the first d − 1 symbols of each codeword in C, Denote the set of modified code-
words by Ĉ

Suppose x ǫ C, denote by x^its image in Ĉ
Then x 6= y ⇒ x^ 6= y^

Therefore If x^ = y^, then d(x, y) ≤ d − 1

Therefore qk = |C| = |Ĉ|

But |C| ≤ qn−dmin+1

⇒ qk ≤ qn−dmin+1

⇒ k ≤ n − dmin + 1

or n − k ≥ dmin − 1

possible block codes = 2n.2k

We want to find codes with good distance structure. Not the whole picture.

The tools of algebra have been used to discover many good codes. The primary al-
gebraic structure of interest are Galois fields. This structure is exploited not only in
discovering good codes but also in designing efficient encoders and decoders.

5-4

Information Theory and Coding

Lecture 6

Pavan Nuggehalli Algebra

We will begin our discussion of algebraic coding theory by defining some important al-
gebraic structures.

Group, Ring, Field and Vector space.

Group : A group is an algebraic structure (G, ∗) consisting of a set G and a binary
operator * satisfying the following four axioms.

1. Closure : ∀a, b ǫ G, a ∗ b ǫ G

2. Associative law : (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ǫ G

3. Identity : ∃ e ǫ G such that e ∗ a = a ∗ e = a ∀ a ǫ G

4. Inverse : ∀ a ǫ G, ∃ b ǫ G such that b ∗ a = a ∗ b = e

A group with a finite number of element is called a finite group. If a ∗ b = b ∗
a ∀ a, b ǫ G, then G is called a commutative or abelian group. For abelian groups * is
usually denoted by + and called addition. The identity element is called 0.

Examples :

(Z, +), (R\{0}, .}, (Z\n, +)

How about (Z,−). Ex: Prove (Z,−) is not a group.

An example of a non commutative group : Permutation Groups

Let X = {1, 2, . . . , n}. A 1-1 map of X onto itself is called a permutation. The symmetric
group Sn is made of the set of permutations of X.

eg : n = 3 Sn = {123, 132, 213, 231, 312, 321}

132 denotes the permutation 1 → 1, 2 → 3, 3 → 2. The group operation is defined
by the composition of permutations. b ∗ c is the permutation obtained by first applying
c and then applying b.

For example :

6-1

132 ∗ 213 = 312
b c

213 ∗ 132 = 231 Non-commutative

A finite group can be represented by an operation table. e.g. Z/2 = {0, 1} (Z/2, +)
+ 0 1
0 0 1
1 1 0

Elementary group properties

1. The identity element is unique
Let e1&e2 be identity elements
Then e1 = e1 ∗ e2 = e2

2. Every element has a unique inverse
b and b′ are two inverses of a. Then
b = b ∗ e = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = e ∗ b′ = b′

3. Cancellation
a ∗ b = a ∗ c ⇒ a = c b ∗ a = c ∗ a ⇒ b = c

a−1 ∗ a ∗ b = a−1 ∗ a ∗ c

⇒ b = c → No duplicate elements in any row or column of operation table

Exercise : Denote inverse of x ǫ G by x′

Show that (a ∗ b)′ = b′ ∗ a′

Definition : The order of a finite group is the number of elements in the group

Subgroups : A subgroup of G is a subset H of G that is itself a group under the
operations of G

1) Closure : a ǫ H, b ǫ H ⇒ a ∗ b ǫ H

2) Associative : (a ∗ b) ∗ c = a ∗ (b ∗ c)

3) Identity : ∃ e′ ǫ H such that a ∗ e′ = e′ ∗ a = a ∀ a ǫ H

Note that e′ = e, the identity of G 1 a ∗ e′ = axe

4) Inverse : ∀ a ǫ H, ∃ b such that a ∗ b = b ∗ a = e

Property (2) holds always because G is a group.

Property (3) follows from (1) and (4) provided H is non-empty.

6-2

H non empty ⇒ ∃ a ǫ H

(4) ⇒ a−1 ǫ H

(1) ⇒ a ∗ a−1 = e ǫ H

Examples : {e} is a subgroup, so is G itself. To check if a non-empty subset H is a
subgroup we need only check for closure and inverse (Properties 1 and 4)

More compactly a ∗ b−1ǫ H ∀a, b ǫ H

For a finite group, enough to show closure.

Suppose G is finite and h ǫ G consider the set H = {h, h ∗ h, h ∗ h ∗ h, . . .}. We will
denote this compactly as {h, h2, h3, . . .}. Consists of all powers of h.

Let the inverse of h be h′

Then (hk)′ = (h′)k

Why? h2 ∗ (h′)2

h ∗ h ∗ h′ ∗ h′ = e

Similarly (h′)2 ∗ h2 = e Closure ⇒ inverse exists
Since the set H is finite

hi = hj

hi(h′)i = hj(h′)j

hi−j = e

∃ n such that hn = e

H = {h, h2, . . . , hn} → cyclic group, subgroup generated by H

hn = e

h.hn−1 = e In general,(hk)′ = hn−k

h′ = hn−1

Order of an element H is the order of the subgroup generated by H

Ex: Given a finite subset H of a group G which satisfies the closure property, prove
that H is a subgroup.

6-3

Cosets : A left coset of a subgroup H is the set denoted by g ∗ H = {g ∗ H : hǫH}.
Ex : g ∗ H is a subgroup if g ǫ H

A right coset is H ∗ g = {h ∗ g : h ǫ H}

Coset decomposition of a finite group G with respect to H is an array constructed as
follows :

a) Write down the first row consisting of elements of H

b) Choose an element of G not in the first row. Call it g2. The second row consists of
the elements of the coset g ∗ H

c) Continue as above, each time choosing an element of G which has not appeared in
the previous rows. Stop when there is no unused element left. Because G is finite
the process has to terminate.

h1 = 1 h2 . . . hn

g2 g2 g2 ∗ h2 . . . g2 ∗ hn

...
gm gm gm ∗ h2 . . . gm ∗ hn

h1, g2, g3, . . . , gm are called coset leaders

Note that the coset decomposition is always rectangular. Every element of G occurs
exactly once in this rectangular array.

Theorem : Every element of G appears once and only once in a coset decomposi-
tion of G.

First show that an element cannot appear twice in the same row and then show that
an element cannot appear in two different rows.

Same row : gkh1 = gkh2 ⇒ h1 = h2 a contradiction

Different row : gkh1 = glh2 where k > l

= gk = glh2h1 ⇒ gk ǫ gl ∗ H , a contradiction

|G| = |H|. (number of cosets of G with respect to H)

Lagrange’s Theorem : The order of any subgroup of a finite group divides the or-
der of the group.

Corr : Prime order groups have no proper subgroups
Corr : The order of an element divides the order of the group

6-4

Rings : A ring is an algebraic structure consisting of a set R and the binary opera-
tions, + and . satisfying the following axioms

1. (R, +) is an abelian group

2. Closure : a.b ǫ R ∀a, b ǫ R

3. Associative Law : a.(b.c) = (a.b).c

4. Distributive Law :
(a + b).c = a.c + b.c

c.(a + b) = c.a + c.b
Two Laws ; need not be commutative

0 is additive identity, 1 is multiplicative identity

Some simple consequences

1. a 0 = 0 a = 0
a.0 = a.(0 + 0) = a.0 + a.0
therefore 0 = a.0

2. a.(−b) = (−a).b = −(a.b)
0 = a.0 = a(b − b) = a.b + a(−b)
therefore a(−b) = −(a.b) 0.b = (a − a)b
Similarly(−a)b = −(a.b) = ab + (−a).b
. → multiplication + → addition a.b = ab

Examples (Z, +, .) (R, +, .) (Z\n, +, .)
(Rnxn, +, .) noncommutative ring

R[x] : set of all polynomials with real coefficients under polynomial addition and multi-
plication

R[x] = {a0 + a1x + . . . + anxn : n ≥ 0, ak ǫ R}

Notions of commutative ring, ring with identity. A ring is commutative if multiplica-
tion is commutative.

Suppose there is an element l ǫ R such that 1.a = a.1 = a

Then R is a ring with identity

Example (2Z, +, .) is a ring without identity

6-5

Theorem :

In a ring with identity

i) The identity is unique

ii) If an element a has an multiplicative inverse, then the inverse is unique.

Proof : Same as the proof for groups.
An element of R with an inverse is called a unit.

(Z, +, .) units 6= 1
(R, +, .) units R\{0}
(Rnxn, +, .) units nonsingular or invertible matrices
R[x] units polynomals of order 0 except the zero polynomal

If ab = ac and a 6= 0 Then is b = c?

Zero divisors, cancellation Law, Integral domain

Consider Z/4. = {0, 1, 2, 3} suppose a.b = ac. Then is b = c? a = b = 2. A ring
with no zero divisor is called when a 6= 0 an integral domain. Cancellation holds in an
integral domain.

Fields :

A field is an algebraic structure consisting of a set F and the binary operators + and .
satisfying

a) (F, +) is an abelian group

b) (F − {0}, .) is an abelian group

c) Distributive law : a.(b + c) = ab + ac

addition multiplication substraction division
Conventions 0 1 a + (−b) a|b

−a a−1 a − b ab−1

Examples : (R, +, .), (C, +, .), (Q, +, .)

A finite field with q elements, if it exists is called a finite field or Galois filed and denoted
by GF (q). We will see later that q can only be a power of a prime number. A finite field
can be described by its operation table.

6-6

GF (2) + 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

GF (3) + 0 1 2 . 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

GF (4) + 0 1 2 3 . 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

multiplication is not modulo 4.

We will see later how finite fields are constructed and study their properties in detail.
Cancellation law holds for multiplication.

Theorem : In any field

ab = ac and a 6= 0

⇒ b = c

Proof : multiply by a−1

Introduce the notion of integral domain

Zero divisors <⇒ Cancellation Law

Vector Space :

Let F be a field. The elements of F are called scalars. A vector space over a field F is
an algebraic structure consisting of a set V with a binary operator + on V and a scalar
vector product satisfying.

1. (V, +) is an abelian group

2. Unitary Law : 1.V = V for ∀ V ǫ V

3. Associative Law : (CiC2).V = Ci(C2V)

4. Distributive Law :
C.(V1 + V2) = C.V1 + C.V2

(C1 + C2).V = C1.V + C2.V

6-7

A linear block code is a vector subspace of GF (q)n.

Suppose V̄1, . . . , V̄m are vectors in GF (q)n.

The span of the vectors {V̄1, . . . , V̄m} is the set of all linear combinations of these vectors.

S = {a1v̄1 + a2v̄2 + . . . + amv̄m : a1, . . . , am ǫ GF (q)}
= LS(v̄1, . . . , v̄m) LS → Linear span

A set of vectors {v̄1, . . . , v̄m} is said to be linearly independent (LI) if

a1v̄1 + . . . + amv̄m = 0 ⇒ a1 = a2 = . . . = am = 0

i.e. no vector in the set is a linear combination of the other vectors.

A basis for a vector space is a linearly independent set that spans the vector space.
What is a basis for GF (q)n. V = LS (Basis vectors)

Take
ē1 = (1, 0, . . . , 0)
ē2 = (0, 1, . . . , 0)
ēn = (0, 0, . . . , 1)

Then {ēk : 1 ≤ k ≤ n} is a basis

To prove this, need to show that e′k are LI and span GF (q)n.

Span :
v̄ = (v1, . . . , vn) Independence : consider e1

=
n
∑

k=1
vkek

{ek} is called the standard basis.

The dimension of a vector space is the number of vectors in its basis.
dimension of GF (q)n = n a vector space V C

Suppose {b̄1, . . . , b̄m} is a basis for GF (q)n

Then any v̄ ǫ V can be written as

V̄ = V1b̄1 + V2b̄2 + . . . + Vmb̄m V1, . . . , Vm ǫ GF (q)

= (V1V2 . . . Vm)

b̄1

b̄2

b̄m

= (V1, V2 Vm)B

6-8

= ā.B where ā ǫ (GF (q))m

Is it possible to have two vectors ā and ā′ such that āB = ā′B

Theorem : Every vector can be expressed as a linear combination of basis vectors
in exactly one way

Proof : Suppose not.
Then

ā.B = ā′.B

⇒ (ā − ā′).B = 0

⇒ (ā − ā′)

b̄1

b̄2
...

b̄m

= 0

(ā1 = ā′
1)b̄1 + (a2 − a′

2)b̄2 + . . . (am − a′
m)b̄m = 0

But b̄′k are LI
⇒ ak = a′

k 1 ≤ k ≤ m

⇒ ā = ā′

Corollary : If (b1, . . . , bm) is a basis for V, then V consists of qm vectors.
Corr : Every basis for V has exactly m vectors

Corollary : Every basis for GF (q)n has n vectors. True In general for any finite di-
mensional vector space Any set of K LI vectors forms a basis.

Review : Vector Space Basis
{b1, . . . , bm}

v = āB ā ǫ GF (q)mB =

b̄1

b̄2

b̄m

|v| = qm

Subspace : A vector subspace of a vector space V is a subset W that is itself a vec-
tor space. All we need to check closed under vector addition and scalar multiplication.

The inner product of two n-tuples over GF (q) is

(a1, . . . , an).(b1, . . . , bm) = a1b1 + . . . + anbn

=
∑

akbk

= ā.̄b⊤

6-9

Two vectors are orthogonal if their inner product is zero

The orthogonal complement of a subspace W is the set W⊥ of n-tuples in GF (q)n which
are orthogonal to every vector in W.

V ǫ W⊥ iff v.w = 0 ∀ w ǫ W⊥

Example : GF (3)2 :
W = {00, 10, 20} GF (2)2

W⊥ = {00, 01, 02} W = {00, 11}
W⊥ = {00, 11}

dim W = 1 10
dim W⊥ = 1 01

Lemma : W⊥ is a subspace

Theorem : If dimW = k, then dimW⊥ = n − k

Corollary : W = (W⊥)⊥ Firstly WC(W⊥)⊥

Proof : Let

dimW = k

⇒ dimW⊥ = n − k

⇒ dim(W⊥)⊥ = k

dimW = dim(W⊥)⊥

Let {g1, . . . , gk} be a basis for W and {h1, . . . , hn−k} be a basis for w⊥

Let G =

g1
...
gk

H =

h1
...

hn−k

k × n n − k × n

Then GH⊤ = Ok × n−k

Gh⊤
1 =

g1h
⊤
1

...
gkh

⊤
1

= Ok × 1

GH⊤ = Ok × n−k

Theorem : A vector V ǫ W iff V H⊤ = 0

vh⊤
1 = 0 v ǫ W and h1 ǫ W⊥

6-10

⇒ V [h⊤
1 h⊤

2 h⊤
n−k] = 0

i.e. V H⊤ = 0

⇐ Suppose V H⊤ = 0 ⇒ V h⊤
j = 0 1 ≤ j ≤ n − k

Then V ǫ (W⊥)⊥ = W

WTS V ǫ (W⊥)⊥

i.e. v.w = 0 ∀ w ǫ W⊥

But w =
n−k
∑

j=1
ajhj

v.w = vw⊤ = v.
n−k
∑

j=1
ajh

⊤
j =

n−k
∑

j=1
ajvj .h

⊤
j = 0

We have two ways of looking at a vector V in W
V ǫ W ⇒ V = a G for some a
Also V H⊤ = 0

How do you check that a vector w lies in W ?

Hard way : Find a vector ā ǫ GF (q)k such that v = aG−

Easy way : Compute V H⊤. H can be easily determined from G.

6-11

Information Theory and Coding

Lecture 7

Pavan Nuggehalli Linear Block Codes

A linear block code of blocklength n over a field GF (q) is a vector subspace of GF (q)n.

Suppose the dimension of this code is k. Recall that rate of a code with M codewords is
given by

R =
1

n
logq M

Here M = qk ⇒ R = k
n

Example : Repetition, SPC,

Consequences of linearity

The hamming weight of a codeword, w(c), is the number of nonzero components of
c . w(c) = dH(o, c)

Er: w(0110) = 2, w(3401) = 3

The minimum hamming weight of a block code is the weight of the nonzero codeword
with smallest weight wmin

Theorem : For a linear block code, minimum weight = minimum distance

Proof : (V, +) is a group
wmin = minc w(c) = dmin = minci 6=cj

d(ci ⊃ cj)

wmin ≥ dmin dmin ≥ wmin

Let co be the codeword of minimum weight. Since o is a codeword

wmin = w(co) = d(o, co) ≥ minci 6=cj
d(ci ⊃ cj)

= dmin

dmin ≥ wmin

Suppose C1 and C2 are the closest codewords. Then C1 − C2 is a codeword.

7-1

Therefore dmin = d(c1, c2) = d(o, c1 − c2)
= w(c1 − c2)
= minc w(c)
= wmin

Therefore dmin ≥ wmin

Key fact : For LBCs, weight structure is identical to distance structure.

Matrix description of LBC

A LBC C has dimension k
⇒ ∃ basis set with k vectors or n-tuples. Call these go, . . . , gk−1. Then any C ǫ C can be
written as

C = α0g0 + α1g1 + . . . + αk−1 gk−1

= [αoα1 . . . αk−1]

go

g1
...

gk−1

i.e. C = ᾱG α ǫ GF (q)k Gis called the generator matrix

This suggests a natural encoding approach. Associate a data vector α with the codeword
αG. Note that encoding then reduces to matrix multiplication. All the trouble lies in
decoding.

The dual code of C is the orthogonal complement C⊥

C⊥ = {h : ch⊤ = o ∀ c ǫ C}

Let ho, . . . , hn−k−1 be the basis vectors for C⊥ and H be the generator matrix for C⊥. H
is called the parity check matrix for C

Example : C = (3, 2) parity check code

C =

0 0 0
0 1 1
1 0 1
1 1 0

G =

[

0 1 1
1 0 1

]

k = 2, n − k = 1

C⊥ =
0 0 0
1 1 1

H = [1 1 1]

H is the generator matrix for the repetition code i.e. SPC and RC are dual codes.

Fact : C belongs to C iff CH⊤ = 0

7-2

Let C be a linear block code and C⊥ be its dual code. Any basis set of C can be used to
form G. Note that G is not unique. Similarly with H.

Note that C̄H⊤ = 0 ∀C̄ ǫ C in particular true for all rows of G

Therefore GH⊤ = 0

Conversely suppose GH⊤ = 0, then H is a parity check matrix if the rows of H form
a LI basis set.

C C⊥

Generator matrix G H

Parity check matrix H G

C̄ ǫ C iff CH⊤ = 0 V̄ ǫ C⊥ iff V G⊤ = 0

Equivalent Codes : Suppose you are given a code C. You can form a new code
by choosing any two components and transposing the symbols in these two components
for every codeword. What you get is a linear block code which has the same minimum
distance. Codes related in this manner are called equivalent codes.

Suppose G is a generator matrix for a code C. Then the matrix obtained by linearly
combining the rows of G is also a generator matrix.

b1 G =

g0

g1
...

gk−1

elementary row operations -

Interchange any tow rows

Multiplication of any row by a nonzero element in GF (q)

Replacement of any row by the sum of that row and a multiple of any other rows.

Fact : Using elementary row operations and column permutation, it is possible to
reduce G to the following form

G = [Ik × k P]

This is called the systematic form of the generator matrix. Every LBC is equivalent
to a code has a generator matrix in systematic form.

7-3

Advantages of systematic G

C = a.G

= (a0 . . . ak−1)[Ik × k P] k × n − k

= (a0 . . . ak−1, Ck, . . . , Ck−1)

Check matrix
H = [−P⊤In−k × n−k]

1) GH⊤ = 0

2) The row of H form a LI set of n − k vectors.

Example

G =

1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

P =

1 0
0 1
1 1

P⊤ =

[

1 0 1
0 1 1

]

−P⊤ =

[

1 0 1
0 1 1

]

H =

[

1 0 1 0 0
0 1 1 0 1

]

n − k ≥ dmin − 1

Singleton bound (revisited)

dmin = minc w(c) ≤ 1 + n − k

Codes which meet the bound are called maximum distance codes or maximum-distance
separable codes.

Now state relationship between columns of H and dmin

Let C be a linear block code (LBC) and C⊥ be the corresponding dual code. Let G
be the generator matrix for C and H be the generator matrix for C⊥. Then H is the
parity check matrix for C and G is the parity check matrix for H.

C̄.H⊤ = 0 ⇔ C̄ ǫ (C⊥)⊥ = C
V̄ .G⊤ = 0 ⇔ V̄ ǫ C⊥

7-4

Note that the generator matrix for a LBC C is not unique.

Suppose

G =

ḡ0

ḡ1
...

ḡk−1

Then
C = LS(ḡ0, . . . , ḡk−1)

= LS(G)

Consider the following transformations of G

a) Interchange two rows C′ = LS(G′) = LS(G) = C

b) Multiply any row of G by a non-zero element of GF (q).

G′ =

αḡ0
...

ḡk−1

LS(G′) = ?
= C

c) Replace any row by the sum of that row and a multiple of any other row.

G′ =

ḡ0 + αḡ1

ḡ1
...
ḡk−1

LS(G′) = C

Easy to see that GH⊤ = Ok×n−k HG⊤ = On−k×k

Suppose G is a generator matrix and H is some n−k×n matrix such that GH⊤ = Ok×n−k.
Is H a parity check matrix.

The above operations are called elementary row operations.

Fact 1 : A LB code remains unchanged if the generator matrix is subjected to elementary
row operations. Suppose you are given a code C. You can form a new code by choosing
any two components and transposing the symbols in these two components. This gives
a new code which is only trivially different. The parameters (n, k, d) remain unchanged.
The new code is also a LBC. Suppose G = [f0, f1, . . . fn−1] Then G′ = [f1, f0, . . . fn−1].
Permutation of the components of the code corresponds to permutations of the columns
of G.

Defn : Two block codes are equivalent if they are the same except for a permutation
of the codeword components (with generator matrices G & G′) G′ can be obtained from
G

7-5

Fact 2 : Two LBC’s are equivalent if using elementary row operations and column
permutations.

Fact 3 : Every generator matrix G can be reduced by elementary row operations and
column operations to the following form :

G = [Ik×k Pn−k×k]

Also known as row-echelon form

Proof : Gaussian elimination
Proceed row by row and then interchange rows and columns.

A generator matrix in the above form is said to be systematic and the corresponding
LBC is called a systematic code.

Theorem : Every linear block code is equivalent to a systematic code.

Proof : Combine Fact3 and Fact2

There are several advantages to using a systematic generator matrix.

1) The first k symbols of the codeword is the dataword.

2) Only n − k check symbols needs to be computed ⇒ reduces decoder complexity.

3) If G = [I P], then H = [−P⊤
n−k×k In−k×n−k]

NTS : GH⊤ = 0 GH⊤ = [IP]

[

−P

I

]

= −P + P = 0

Rows of H are LI

Now let us study the distance structure of LBC

The Hamming weight, w(c̄) of a codeword c̄, is the number of non-zero components
of c̄. w(c̄) = dH(o, c̄)

The minimum Hamming weight of a block code is the weight of the non-zero code-
word with smallest weight.

wmin = minc̄ ǫ C w(c̄)

7-6

Theorem : For a linear block code, minimum weight = minimum distance

Proof : Use the fact that (C, +) is a group

wmin = minc̄ ǫ C w(c̄) dmin = min(ci 6=cj)ci,cj ǫ C
d(c̄i, c̄j)

wmin ≥ dmin dmin ≥ wmin

Let c̄o be the minimum weight codeword
O ǫ C

wmin = w(co) = d(o, c̄o) ≥ min(ci 6=cj)ci,cj ǫ C

⇒ wmin ≥ dmin

Suppose c̄1 and c̄2 are the two closest codewords
Then c̄1 − c̄2 ǫ C

therefore dmin = d(c̄1, c̄2) = d(o, c̄1, c̄2)
= w(c̄1, c̄2)
≥ minc̄ ǫ C w(c̄) = wmin

Key fact : For LBC’s, the weight structure is identical to the distance structure.

Given a generator matrix G, or equivalently a parity check matrix H, what is dmin.

Brute force approach : Generate C and find the minimum weight vector.

Theorem : (Revisited) The minimum distance of any linear (n, k) block code satis-
fies

dmin ≤ 1 + n − k

7-7

Proof : For any LBC, consider its equivalent systematic generator matrix. Let c̄ be
the codeword corresponding to the data word (1 0 . . . 0)
Then wmin ≤ w(c̄) ≤ 1 + n − k

⇒ dmin ≤ 1 + n − k

Codes which meet this bound are called maximum distance seperable codes. Exam-
ples include binary SPC and RC. The best known non-binary MDS codes are the Reed-
Solomon codes over GF (q). The RS parameters are

(n, k, d) = (q − 1, q + d, d + 1) q = 256 = 28

Gahleo Mission (255, 223, 33)

A codeword c̄ ǫ C iff c̄H⊤ = 0. Let H = [f̄0, f̄1 . . . f̄n−1] where f̄k is a n − k × 1 col-
umn vector.

c̄H⊤ = 0 ⇒
n−1
∑

i=0
cifi = 0 when f⊤

k is a 1 × n − k vector corresponding to a column

of H.

therefore each codeword corresponds to a linear dependence among the columns of H.
A codeword with weight w implies some w columns are linearly dependent. Similarly a
codeword of weight at most w exists, if some w columns are linearly dependent.

Theorem : The minimum weight (= dmin) of a LBC is the smallest number of lin-
early dependent columns of a parity check matrix.

Proof : Find the smallest number of LI columns of H. Let w be the smallest num-

ber of linearly dependent columns of H. Then
w−1
∑

k=0
ank

f̄nk
= 0. None of the ank

are o.

(violate minimality).

Consider the codeword
Cnk

= ank

C1 = 0
otherwise

Clearly C̄ is a codeword with weight w.

Examples

Consider the code used for ISBN (International Standardized Book Numbers). Each
book has a 10 digit identifying code called its ISBN. The elements of this code are from
GF (11) and denoted by 0, 1, . . . , 9, X. The first 9 digits are always in the range 0 to 9.
The last digital is the parity check bit.

7-8

The parity check matrix is
H = [1 2 3 4 5 6 7 8 9 10]

GF (11) is isomorphic to Z/11 under addition and multiplication modulo11
dmin = 2
⇒ can detect one error

Ex : Can also detect a transposition error i.e. two codeword positions are interchanged.

Blahut :
[0521553741]
12345678910

1
2
3
4
5
6
7
8
9
10

= 65

Hamming Codes

Two binary vectors are independent iff they are distinct and non zero. Consider a binary
parity check matrix with m rows. If all the columns are distinct and non-zero, then
dmin ≥ 3. How many columns are possible? 2m − 1. This allows us to obtain a binary
(2m − 1, 2m − 1 − m, 3) Hamming code. Note that adding two columns gives us another
column, so dmin ≤ 3.

Example : m = 3 gives us the (7, 4) Hamming code

H =

0111
1101
1011
︸ ︷︷ ︸

100
010
001
︸︷︷︸

G =

1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

−P⊤ I3×3 ⇒
G = [I P]

Hamming codes can correct single errors and detect double errors used in SIMM and
DIMM.

Hamming codes can be easily defined over larger fields.

Any two distinct & non-zero m-tuples over GF (q) need not be LI. e.g. ā = 2.b̄

Question : How many m-tuples exists such that any two of them are LI.

qm−1
q−1

Defines a
(

qm−1
q−1

, qm−1
q−1

− m, 3
)

Hamming code over GF(q)

7-9

Consider all nonzero m-tuples or columns that have a 1 in the topmost non zero compo-
nent. Two such columns which are distinct have to be LI.

Example : (13, 10) Hamming code over GF (3)

H =

1 1 1 111 1 1 0 0 1 0 0
0 0 1 112 2 2 1 1 0 1 0
1 2 0 120 1 2 1 2 0 0 1

33 = 27 − 1 = 26
2

= 13

dminofC⊥ is always ≥ k

Suppose a codeword c̄ is sent through a channel and received as senseword r̄. The
errorword ē is defined as

ē = r̄ − c̄

The decoding problem : Given r̄, which codeword c̄ ǫ C maximizes the likelihood of
receiving the senseword r̄ ?

Equivalently, find the most likely error pattern ê. ĉ = r̄ − ē Two steps.

For a binary symmetric channel, most likely, means the smallest number of bit errors.
For a received senseword r̄, the decoder picks an error pattern ē of smallest weight such
that r̄ − ē is a codeword. Given an (n, k) binary code, P (w(ē) = j) = (Nj)P

j(1−P)N−j

function of j.

This is the same as nearest neighbour decoding. One way to do this would be to write a
lookup table. Associate every r̄ ǫ GF (q)n, to a codeword ĉ ǫ GF (q), which is r̄’s nearest
neighbour. A systematic way of constructing this table leads to the (Slepian) standard
array.

Note that C is a subgroup of GF (q)n. The standard array of the code C is the coset
decomposition of GF (q)n with respect to the subgroup C. We denote the coset {ḡ + c̄ :
∀ ǫ C} by ḡ + C. Note that each row of the standard array is a coset and that the cosets
completely partition GF (q)n.

The number of cosets =
|GF (q)n|

C =
qn

qk
= qn−k

7-10

Let o, c̄2, . . . , c̄qk be the codewords. Then the standard array is given by

o c̄2 c̄3 . . . c̄qk

ē2 c̄2 + ē2 c̄3 + ē2 . . . c̄qk + ē2

ē3
...

...
ēqn−k ēqn−k + c̄2 . . . c̄qk + ēqn−k

1. The first row is the code C with the zero vector in the first column.

2. Choose as coset leader among the unused n-tuples, one which has least Hamming
weight, ”closest to all zero vector”.

Decoding : Find the senseword r̄ in the standard array and denote it as the code-
word at the top of the column that contains r̄.

Claim : The above decoding procedure is nearest neighbour decoding.

Proof : Suppose not.
We can write r̄ = c̄ijk + ēj . Let c̄1 be the nearest neighbor.
Then we can write r̄ = c̄i + ēi such that w(ēi) < w(ej)

⇒ c̄j + ēj = c̄i + ēi

i.e. ēi = ēj + c̄j − c̄i But c̄j − c̄i ∈ C
⇒ ēi ∈ ēj + C and w(ēi) < w(ēj), a contradiction.

Geometrically, the first column consists of Hamming spheres around the all zero code-
word. The kth column consists of Hamming spheres around the kth codeword.

Suppose dmin = 2t + 1. Then Hamming spheres of radius t are non-intersecting.

In the standard array, draw a horizontal line below the last row such that w(ek) ≤ t.
Any senseword above this codeword has a unique nearest neighbour codeword. Below
this line, a senseword will have more than one nearest neighbour codeword.

A Bounded-distance decoder corrects all errors up to weight t. If the senseword falls
below the Lakshman Rekha, it declares a decoding failure. A complete decoder assigns
every received senseword to a nearby codeword. It never declares a decoding failure.

Syndrome detection

For any senseword r̄, the syndrome is defined by S̄ = r̄H⊤.

7-11

Theorem : All vectors in the same coset have the same syndrome. Two distinct cosets
have distinct syndromes.

Proof : Suppose r̄ and r̄′ are in the same coset
Then r̄ = c̄ + ē. Let ē be the coset leader and r̄′ = c̄′ + ē
therefore S(r̄) = r̄H⊤ = ēH⊤

and S(r̄′) = r̄′H⊤ = ēH⊤

Suppose two distinct cosets have the same syndrome. Then Let ē and e⊤ be the corre-
sponding coset leaders.

ēH⊤ = ē′H⊤

⇒ ē − ē′ ǫ C
therefore ē = ē′ + c̄ ⇒ ē ǫ ē′ + C a contradiction

This means we only need to tabulate syndromes and coset leaders.

Suppose you receive r̄. Compute syndrome S = rH⊤. Look up table to find coset leader ē

Decide ĉ = r̄ − ē

Example : (1, 3)RC

Hamming Codes :

Basic idea : Construct a Parity Check matrix with as many columns as possible such
that no two columns are linearly dependent.

Binary Case : just need to make sure that all columns are nonzero and distinct.

Non-binary Case : V̄1 6= 0

Pick a vector V̄1 ǫ GF (qm), The set of vectors LD with V̄1 are {Ō, V̄1, 2V̄1, . . . , (q−1)V̄1} △
=

H1

Pick V̄2 ǫ?H1 and form the set of vectors LD with V̄2{Ō, V̄2, 2V̄2, . . . , (q − 1)V2}

Continue this process till all the m-tuples are used up. Two vectors in disjoint sets
are L.I. Incidentally {Hn, +} is a group.

#columns = qm−1
q−1

Two non-zero distinct m tuples that have a 1 as the topmost or first non-zero com-
ponent are LI Why?

7-12

#mtuples = qm−1 + qm−2 + . . . + 1 = qm−1
q−1

Example : m = 2, q = 3 n = 32−1
3−1

= 4 k = n − m = 2 (4, 2, 3)

Suppose a codeword c̄ is sent through a channel and received as senseword r̄. The
error vector or error pattern is defined as

ē = r̄ − c̄

The Decoding Problem : Given r̄, which codeword ĉ ǫ C maximizes the likelihood of
receiving the senseword r̄ ? Equivalently, find the most likely valid errorword ê, ĉ = r̄−ê.

For a binary symmetric channel, with Pe < 0.5 ”most likely” error pattern is the er-
ror pattern with least number of 1’s, i.e. the pattern with the smallest number of bit
errors. For a received senseword r̄, the decoder picks an error pattern ê of smallest weight
such that r̄ − ê is a codeword.

This is the same as nearest neighbour decoding. One way to do this would be to write
a look-up table. Associate every r̄ ǫ GF (q)n to a codeword ĉ(r̄) ǫ C, which is r̄’s nearest
neighbour in C.

There is an element of arbitrariness in this procedure because some r̄ may have more
than one nearest neighbour. A systematic way of constructing this table leads us to the
(slepian) standard array.

We begin by noting that C is a subgroup of GF (q)n. For any ḡ ǫ GF (q)n, the coset
associated with ḡ is given by the set ḡ + C = {ḡ + c̄ : c̄ ǫ C}

Recall :

1) The cosets are disjoint completely partition GF (q)n

2) # cosets = |GF (q)n|
|C|

= qn

qk = qn−k

The standard array of the code C is the coset decomposition of GF (q)n with respect
to the subgroup C.

Let ō, c̄2, . . . , c̄qk be the codewords. Then the standard array is constructed as follows :

a) The first row is the code C with the zero vector in the first column. ō is the coset
leader.

7-13

b) Among the vectors not in the first row, choose an element or vector ē2, which has
least Hamming weight. The second row is the coset ē2 + C with ē2 as the coset
leader.

c) Continue as above, each time choosing an unused vector g ǫ GF (q)n of minimum
weight.

Decoding : Find the senseword r̄ in the standard array and decode it as the code-
word at the top of the column that contains r̄.

Claim : Standard array decoding is nearest neighbor decoding.

Proof : Suppose not. Let c̄ be the codeword obtained using standard array decod-
ing and let c̄′ be any of the nearest neighbors. We have r̄ = c̄ + ē = c̄′ + ē′ where ē is the
coset leader for r̄ and w(ē) > w(ē′)
⇒ ē′ = ē + c̄ − c̄′

⇒ ē′ ǫ ē + C
By construction, ē has minimum weight in ē + C
⇒ w(ē) ≤ w(ē′), a contradiction

What is the geometric significance of standard array decoding. Consider a code with
dmin = 2t + 1. Then Hamming spheres of radius t, drawn around each codeword are
non-intersecting. In the standard array consider the first n rows. The first n vectors
in the first column constitute the Hamming sphere of radius 1 drawn around the ō vec-
tor. Similarly the first n vectors of the kth column correspond to the Hamming sphere
of radius 1 around c̄k. The first n + (n2) vectors in the kth column correspond to the
Hamming sphere of radius 2 around the kth codeword. The first n+(n2)+ . . . (nt) vectors
in the kth column are elements of the Hamming sphere of radius t around c̄k. Draw a
horizontal line in the standard array below these rows. Any senseword above this line
has a unique nearest neighbor in C. Below the line, a senseword may have more than one
nearest neighbor.

A Bounded Distance decoder converts all errors up to weight t, i.e. it decodes all sense-
words lying above the horizontal line. If a senseword lies below the line in the standard
array, it declares a decoding failure. A complex decoder simply implements standard
array decoding for all sensewords. It never declares a decoding failure.

Example : Let us construct a (5, 2) binary code with dmin = 3

H =

1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

G =

1 0 1 1 0
0 1 1 0 1

−P⊤ I I : P

7-14

Codewords C = {00000, 01101, 10110, 11011}

00000 01101 10110 11011
00001 01100 10111 11010
00010 01111 10100 11001
00100 01001 10010 11111
01000 00101 11110 10011
10000 11101 00110 01011

00011 01110 10101 11000
01010 00011 11100 11011

00011 = 11011 + 11000
= 00000 + 00011

Syndrome detection :

For any senseword r̄, the syndrome is defined by s̄ = r̄H⊤

Theorem : All vectors in the same coset (row in the standard array) have the same
syndrome. Two different cosets/rows have distinct syndromes.

Proof : Suppose r̄ and r̄′ are in the same coset.
Let ē be the coset leader.
Then r̄ = c̄ + ē and r̄′ = c̄′ + ē

r̄H⊤ = c̄H⊤ + ēH⊤ = ēH⊤ = c̄′H⊤ + ēH⊤ = r̄′H⊤

Suppose two distinct cosets have the same syndrome.
Let ē and ē′ be the coset leaders
Then ēH⊤ = ē′H⊤

⇒ (ē − ē′)H⊤ = 0 ⇒ ē − ē′ ǫ C ⇒ ē ǫ ē′ + C, a contradiction.

This means we only need to tabulate syndromes and coset leaders. The syndrome de-
coding procedure is as follows :

1) Compute S = r̄H⊤

2) Look up corresponding coset leader ē

3) Decode ĉ = r̄ − ē

qn−k RS(255, 223, 33), qn−k = (256)32 = 2
28×32 = 2256 > 1064 more than the number of atoms on earth?

Why can’t decoding be linear. Suppose we use the following scheme : Given syndrome
S, we calculate ê = S.B where B is a n − k × n matrix.

7-15

Let E = {ê : ê = SB for some S ǫ GF (q)n−k}

Claim : E is a vector subspace of GF (q)n

|E| ≤ qn−k ⇒ dimE ≤ n − k

Let E1 = {single errors where the non zero component is 1 which can be detected}
E1 ⊂ E

We note that no more n − k single errors can be detected because E1 constitutes a
LI set. In general not more than (n − k)(q − 1) single errors can be detected. Example
(7, 4) Hamming code can correct all single errors (7) in contrast to 7− 4 = 3 errors with
linear decoding.

Need to understand Galois Field to devise good codes and develop efficient decoding
procedures.

7-16

Information Theory and Coding

Lecture 8

Pavan Nuggehalli Finite Fields

Review : We have constructed two kinds of finite fields. Based on the ring of integers
and the ring of polynomials.

(GF (q) − {0}, .) is cyclic ⇒ ∃ α ∈ GF (q) such that
GF (q) − {0} = {α, α2, . . . , αq−1 = 1}. There are Q(q − 1) such primitive elements.

Fact 1 : Every finite field is isomorphic to a finite field GF (pm), P prime constructed
using a prime polynomial f(x) ∈ GF (p)[x]

Fact 2 : There exist prime polynomials of degree m over GF (P), p prime, for all
values of p and m. Normal addition, multiplication, smallest non-trivial subfield.

Let GF (q) be an arbitrary field with q elements. Then GF (q) must contain the additive
identity 0 and the multiplicative identity 1. By closure GF (q) contains the sequence of
elements 0, 1, 1 + 1, 1 + 1 + 1, . . . and so on. We denote these elements by 0, 1, 2, 3, . . .
and call them the integers of the field. Since q is finite, the sequence must eventually
repeat itself. Let p be the first element which is a repeat of an earlier element, r. i.e.
p = r m GF (q).

But this implies p − r = 0, so if r 6= 0, then these must have been an earlier repeat
at p − r = 0. We can then conclude that p = 0. The set of field integers is given by
G = {0, 1, 2, . . . , P − 1}.

Claim : Addition and multiplication in G is modulo p.

Addition is modulo p because G is a cyclic group under addition. Multiplication is
modulo p because of distributive law.

a.b = (1 + 1 + . . . + 1)
︸ ︷︷ ︸

.b = b + b + . . . + b = a × b(mod p)

a times

Claim : (G, +, .) is a field
(G, +) is an abelian group, (G − {0}, .) is an abelian group, distributive law holds.

To show (G − {0}, .) is a group, NTS closure & inverse.

This is just the field of integers modulo p. We can then conclude that p is prime.
Then we have

Theorem : Each finite field contains a unique smallest subfield which has a prime

8-1

number of elements.

The number of elements of this unique smallest subfield is called the characteristic of
the field.

Corr. If q is prime, the characteristic of GF (q) is q. In other words GF (q) = Z/q.
Suppose not G is a subgroup of GF (q) ⇒ p/q ⇒ p = q.

Defn : Let GF (q) be a field with characteristic p. Let f(x) be a polynomial over
GF (p). Let α ∈ GF (q). Then f(α), α ∈ GF (q) is an element of GF (q). The monic poly-
nomial of smallest degree over GF (p) with f(α) = 0 is called the minimal polynomial of
α over GF (p).

Theorem :

1) Every element α ∈ GF (q) has a unique minimal polynomial.

2) The minimal polynomial is prime

Proof : Pick α ∈ GF (q)

Evaluate the zero, degree.0, degree.1, degree.2 monu polynomials with x = α , until
a repetition occurs. Suppose the first repetition occurs at f(x) = h(x) where deg f(x) >

deg h(x). Otherwise f(x) − h(x) has degree < deg f(x) and evaluates to 0 for x = α .
Then f(x) − h(x) is the minimal polynomial for α ∈ GF (q).

Any other lower degree polynomial cannot evaluate to 0. Otherwise a repetition would
have occurred before reaching f(x).

Uniqueness : g(x) and g′(x) are two monu polynomials of lowest degree such that
g(α) = g′(α) = 0. Then h(x) = g(x)− g′(x) has degree lower than g(x) and evaluates to
0, a contradiction.

Primatily : Suppose g(x) = p1(x) . p2(x) . pN(x). Then g(α) = 0 ⇒ pk(α) = 0.
But pk(x) has lower degree than g(x), a contradiction.

Theorem : Let α be a primitive element in a finite field GF (q) with characteristic
p. Let m be the degree of the minimal polynomial of α over GF (p). Then q = pm and
every element β ∈ GF (q) can be written as

β = am−1 αm−1 + am−2 αm−2 + . . . + a1 α + a0

where am−1, . . . , a0 ∈ GF (p)

8-2

Proof : Pick some combination of am−1, am−2, . . . , a0 ∈ GF (p)

Then β = am−1 αm−1 + . . . + a1 α + a0 ∈ GF (q)

Two different combinations cannot give rise to the same field element. Otherwise we
would have
β = am−1 αm−1 + . . . + a0 = bm−1 αm−1 + . . . + b0

⇒ (am−1 − bm−1)α
m−1 + . . . + (a0 − b0) = 0

⇒ α is a zero of a polynomial of degree m − 1, contradicting the fact that the minimal
polynomial of α has degree m.

There are pm such combinations, so q ≥ pm. Pick any β ∈ GF (q) − {0}. Let f(α)
be the deg m, minimal polynomial of α. Then β = αl 1 ≤ l ≤ q − 1

Then β = αl = Q(α).f(α) + r(α), deg r(α) ≤ m − 1 division algorithm
i.e. β = r(α)
⇒ every element β can be expressed as a linear combination of αm−1, αm−2, . . . , α0

Therefore q ≤ pm. Hence proved.

Corr : Every finite field is isomorphic to a field GF (p)/p(x)

Proof : By theorem, every element of GF (q) can be associated with a polynomial
of deg m−1 replacing α with the indeterminate x. These polynomials can be thought of
as field elements. They are added and multiplied modulo f(x), the minimal polynomial
of α. This field is then isomorphic to the field GF (p)[x]/f(x).

Theorem : A finite field exists of size pm for all primes p and m ≥ 1

Proof : Handwaving
Need to show that there exists a prime polynomial over GF (p) for every degree m.
The scene of Eratosthenes

8-3

Information Theory and Coding

Lecture 9

Pavan Nuggehalli Cyclic Codes

Cyclic codes are a kind of linear block codes with a special structure. A LBC is called
cyclic if every cyclic shift of a codeword is a codeword.

Some advantages

- amenable to easy encoding using shift register

- decoding involves solving polynomial equations not based on look-up tables

- good burst correction and error correction capabilities. Ex-CRC are cyclic

- almost all commonly used block codes are cyclic

Definition : A linear block code C is cyclic if

(c0 c1 . . . cn−1) ∈ C ⇒ (cn−1 c0 c1 . . . cn−2) ∈ C

Ex : equivalent def. with left shifts

It is convenient to identify a codeword c0 c1 . . . cn−1 in a cyclic code C with the polyno-
mial c(x) = c0 + c1x + . . . + cn−1 xn−1. If ci ∈ GF (q) Note that we can think of C as a
subset of GF (q)[x]. Each polynomial in C has degree m ≤ n− 1, therefore C can also be
thought of as a subset of GF (q)|xn − 1, the ring of polynomials modulo xn − 1 C will be
thought of as the set of n tuples as well as the corresponding codeword polynomials.

In this ring a cyclic shift can be written as a multiplication with x in the ring.

Suppose c = (c0 . . . cn−1)
Then c(x) = c0 + c1x + . . . cn−1 xn−1

Then x c(x) = c0x + c1x
2 + . . . cn−1 xn

and x c(x) mod xn − 1 = c0x + . . . + cn−1

which corresponds to the code (cn−1 c0 . . . cn−2)
Thus a linear code is cyclic iff

c(x) ∈ C ⇒ x c(x) mod xn − 1 ∈ C

A linear block code is called cyclic if

(c0 c1 . . . cn−1) ∈ C ⇒ (cn−1 c0 c1 . . . cn−2) ∈ C

9-1

Equivalently, in terms of codeword polynomials,

c(x) ∈ C ⇒ x c(x) mod xn − 1 ∈ C

Theorem : A set of codeword polynomials C is a cyclic code iff

1) C is a subgroup under addition

2) c(x) ∈ C ⇒ a(x) c(x) mod xn − 1 ∈ C ∀a(x) ∈ GF (q)[x]

Theorem : Let C be an (n, k) cyclic code. Then

1) There exists a unique monu polynomial g(x) ∈ C of smallest degree among all non
zero polynomials in C

2) c(x) ∈ C ⇒ c(x) = a(x) g(x)

3) deg. g(x) = n − k

4) g(x) | xn − 1

Let h(x) = xn−1
g(x)

. h(x) is called the check polynomial. We have

Theorem : c(x) ∈ C ⇔ c(x) h(x) = 0 mod xn − 1

Theorem : The generator and parity check matrices for a cyclic code with genera-
tor polynomial g(x) and check polynomial h(x) are given by

G =

g0 g1 . . . gn−k 0 0 . . . 0
0 g0 g1 . . . gn−k−1 gn−k 0 . . . 0
0 0 g0 gn−k . . . 0

. . .
...

. . .

0 0 g0 g1 . . . gn−k

H =

hk hk−1 hk−2 h0 0 0 0 0
0 hk hk−1 h0 0 0 0
... 0 hk

. . .
... 0

. . .

0 0 0 hk hk−1 . . . h0

9-2

Proof : Note that g0 6= 0 Otherwise, we can write

g(x) = xg′(x) ⇒ xng(x) = xg′(x) mod xn − 1
⇒ g′(x) = xn−1g(x) mod xn − 1
⇒ g′(x) ∈ C a contradiction

Each row in G corresponds to a codeword (g(x), xg(x), . . . , xk−1g(x)). These codewords
are LI. For H to be the parity check matrix, we need to show that GHT = 0 and that
the n − k rows of H are LI. deg h(x) = k ⇒ hk 6= 0. Therefore, each row is LI. Need
to show GHT = 0k×n−k

We know g(x) h(x) = xn − 1 ⇒ coefficients of x1, x2, . . . , xn−1 are 0

i.e. ul =
l

∑

k=0
gk hl−k = 0 1 ≤ l ≤ n − 1

It is easy to see by inspection that

GHT =

uk uk+1 . . . un−1

uk−1 uk un−2
...

u1 u2 un−k

= Ok×n−k

These matrices can be reduced to systematic form by elementary row operations.

Encoding and decoding : polynomial multiplication
Let a(x) be the data polynomial, degree ≤ k − 1

c(x) = a(x) g(x)

Decoding :

Let v(x) = c(x) + e(x) be the received senseword. e(x) is the errorword polynomial

Definition : Syndrome polynomial s(x) is given by s(x) = v(x) mod g(x)

We have
s(x) = [c(x) + e(x)] mod g(x)

= e(x) mod g(x)

Syndrome decoding : Find the e(x) with the least number of nonzero coefficients
satisfying

s(x) = e(x) mod g(x)

Syndrome decoding can be implemented using a look up table. There are qn−k val-

9-3

ues of s(x), store corresponding e(x)

Theorem : Syndrome decoding is nearest neighbour decoding.

Proof : Let e(x) be the error vector obtained using syndrome detection. Syndrome
detection differs from nearest neighbour decoding if there exists an error polynomial
e′(x) with weight strictly less than e(x) such that

v(x) − e′(x) = c′(x) ∈ C
But v(x) − e(x) = c(x) ∈ C
⇒ e′(x) − e(x) ∈ C
⇒ e′(x) = e(x) mod g(x)
But s(x) = e(x) mod g(x)
⇒ s(x) = e′(x) mod g(x), a contradiction

By definition e(x) is the smallest weight error polynomial for which s(x) = e(x) mod g(x)

Let us construct a binary cyclic code which can correct two errors and can be decoded
using algebraic means Let n = 2m − 1. Suppose α is a primitive element of GF (2m).
Define

C = {c(x) ∈ GF (2)/xn − 1 : c(α) = 0 and c(α3) = 0 in GF (2m) = GF (n + 1)}

Note that C is cyclic : C is a group under addition and c(x) ∈ C ⇒ a(x) c(x) mod xn−1 =
0

a(α) c(α) = 0 and α(α3) c(α3) = 0 ⇒ a(x) c(x) mod xn − 1 ∈ C

We have the senseword v(x) = c(x) + e(x)

Suppose at most 2 errors occurs. Then e(x) = 0 or e(x) = xi or e(x) = xi + xj

Define X1 = αi and X2 = αj . X1 and X2 are called error location numbers and are
unique because α has order n. So if we can find X1&X2, we know i and j and the
senseword is properly decoded.

Let S1 = V (α) = αi + αj = X1 + X2

and S2 = V (α3) = α3i + α3j = X3
1 + X3

2

We are given S1 and S2 and we have to find X1 and X2. Under the assumption that at

9-4

most 2 errors occur, S1 = 0 iff no errors occur.

If the above equations can be solved uniquely for X1 and X2, the two errors can be
corrected. To solve these equations, consider the polynomial

(x − X1)(x − X2) = x2 + (X1 + X2)x + (X1X2)
X1 + X2 = S1

(X1 + X2)
3 = (X1 + X1)

2(X1 + X2) = (X2
1 + X2

2)(X1 + X2)
= X3

1 + X2
1X2 + X2

2X1 + X3
2

= S3 + X1X2(S1)

⇒ X1X2 =
S3

1
+S3

S1

therefore (x − X1)(x − X2) = x2 + S1x +
S3

1
+S3

S1

We can construct the RHS polynomial. By the unique factorization theorem, the ze-
ros of this quadratic polynomial are unique.

One easy way to find the zeros is to evaluate the polynomial for all 2m values in GF (2m)

Solution to Midterm II

1. Trivial

2. 51, not abelian (a − b)−1 = ab = b−1a−1 = ba

3. Trivial

4. 1, 3, 7, 9, 21, 63,
α ∈ GF (p) αp−1 = 1 ⇒ αp = α

Look at the polynomial xp − x. This has only p zeros given by elements of GF (p).
If α ∈ GF (pm) and βp = β and β 6∈ GF (p), then xp − x will have p + 1 roots, a
contradiction.

Procedure for decoding

1. Compute syndromes S1 = V (α) and S2 = V (α3)

2. If S1 = 0 and S2 = 0, assume no error

3. Construct the polynomial x2 + s1x +
s3

1
+s3

s1

4. Find the roots X1 and X2. If either of them is 0, assume a single error. Else, let
X1 = αi and X2 = αj . Then errors occur in locations i & j

9-5

Many cyclic codes are characterized by zeros of all codewords.

C = {c(x) : c(β1) = 0, c(β2) = 0, . . . , c(βl) = 0}

c0, . . . , cn−1 ∈ GF (q) and β1, . . . , βl ∈ GF (Q) ⊃ GF (q) ⇒ Q = qm

Note that the above definition imposes constraint on values of q and n.

c(β) = 0 ∀c ∈ C(x − β) | c(x) ⇒ x − β | g(x)

⇒ x − β | xn − 1 ⇒ βn = 0 ⇒ n | Q − 1 ⇒ n|qm − 1

because GF (Q) is an extension field of GF (q)

Lemma : Suppose n and q are co-prime. Then there exists some number m such
that n | qm − 1

Proof :

q = Q1n + S1

q2 = Q2n + S2
...
qn+1 = Qn+1n + Sn + 1

All the remainders lie between 0 and n − 1. Because we have n + 1 remainders, at
least two of them must be the same, say Si and Sj .

Then we have
qj − qi = Qjn + Sj − Qin − Si

= (Qj − Qi)n
or qj(qj−1 − 1) = (Qj − Qi)n
n 6 /qi ⇒ n|qj−i − 1

Put m = j − 1, and we have n|qm − 1 for some m

Corr : Suppose n and q are co-prime and n|qm − 1. Let C be a cyclic code over GF (q)
of length n.

Then g(x) = Πl
i=1(x − βl) where βl ∈ GF (qm)

n|qm − 1 ⇒ xn − 1|xqm−1 − 1

9-6

Proof : zk − 1 = (z − 1)(zk−1 + zk−2 + . . . + 1)
Let qm − 1 = n.r.

Put z = xn and k = r

Then xnr − 1 = xqm−1 − 1 = (xn − 1)(xn(k−1) + . . . + 1)
⇒ xn − 1|xqm−1 ⇒ g(x)|xqm−1

But xqm−1 − 1 = Πqm−1
i=1 (x − αi), αi ∈ GF (qm), αi 6= 0

Therefore g(x) = Πl
i=1(x − βi)

Note : A cyclic code of length n over GF (q), such that n 6= qm − 1 is uniquely specified
by the zeros of g(x) in GF (qm).

C = {c(x) : c(βi) = 0, 1 ≤ i ≤ l}

Defn. of BCH Code : Suppose n and q are relatively prime and n|qm − 1. Let α

be a primitive element of GF (qm). Let β = αqm−1/n. Then β has order n in GF (qm).

An (n, k) BCH code of design distance d is a cyclic code of length n given by

C = {c(x) : c(β) = c(β2) . . . = c(βd−1) = 0}

Note : Often we have n = qm − 1. In this case, the resulting BCH code is called
primitive BCH code.

Theorem : The minimum distance of an (n, k) BCH code of design distance d is at
least d.

Proof :

Let H =

1 β β2 . . . βn−1

1 β2 β4 . . . β2(n−1)

...
1 βd−1 β2(d−1) . . . β(d−1)(n−1)

c(β1) = c

1
βi

β2i

β(n−1)i

Therefore C ∈ C ⇔ CHT = 0 and C ∈ GF (q)[x]

9-7

Digression :

Theorem : A matrix A has an inverse iff detA 6= 0

Corr : CA = 0 and C 6= 01×n ⇒ detA = 0

Proof : Suppose detA 6= 0. Then A−1 exists
⇒ CAA−1 = 0 ⇒ C = 0, a contradiction.

Lemma :
det(A) = det(AT)
det(KA) = KdetA Kscalar

Theorem : Any square matrix of the form

A =

1 1 . . . 1
X1 X2 Xd

...
...

...
Xd−1

1 Xd−1
2 Xd−1

d

has a non-zero determinant iff all the X1 are distinct

vandermonde matrix.

Proof : See pp 44, Section 2.6
End of digression

In order to show that weight of c is at least d, let us proceed by contradiction. As-
sume there exists a nonzero codeword c, with weight w(c) = w < d i.e. ci 6= 0 only for
i ∈ {n1, . . . , nw}

CHT = 0

⇒ (c0 . . . cn−1)

1 1 . . . 1
β β2 βd−1

β2 β4 β2(d−1)

...
...

...
βn−1 β2(n−1) β(d−1)(n−1)

= 0

⇒ (cn1
. . . cnw

)

βn1 β2n1 . . . β(d−1)n1

βn2 β2n2 β(d−1)n2

...
...

...
βnw β2nw β(d−1)nw

= 0

⇒ (cn1
. . . cnw

)

βn1 . . . βwn1

βn2 βwn2

...
...

βnw

βwnw

= 0

9-8

⇒ det

βn1 . . . βwn1

βn2 βwn2

...
...

βnw βwnw

= 0

⇒ βn1βn2 . . . βnw .det

1 βn1 . . . β(w−1)n1

1 βn2 . . . β(w−1)n2

...
1 βnw . . . β(w−1)nw

= 0

det(A) = det(AT)
But

⇒ det

1 1 . . . 1
βn1 βn2 βnw

...
...

β(w−1)n1 β(w−1)n2 β(w−1)nw

= 0, a contradiction. Hence proved.

Suppose g(x) has zeros at β1, . . . , βl Can we write

C = {c(x) : c(β1) = . . . = c(βl) = 0}?

No! in general. Example Take n = 4 g(x) = (x + 1)2 = x2 + 1|x4 − 1
C(x) = {c(x) : c(1) = 0} = {a(x)(x + 1) mod x4 − 1} 6=< g(x) >

Some special cases :

1) Binary Hamming codes : let q = 2 and n = 2m − 1. Clearly n and q are co-prime. Let
α be a primitive element of GF (2m). Then the (n, k) BCH code of design distance 3 is
given by C = {c(x) : c(α) = 0, c(α2) = 0}

In GF (2)[x] c(x2) = c(x)2

(a + b)2 = a + b ⇒ [
n−1
∑

i=1

cix
i]2 =

n−1
∑

i=1

c2
1x

2i =
n−1
∑

i=1

cix
2i = c(x2)

Therefore C = {c(x) : c(α) = 0}

Let H = [α α2 . . . αn = 1]
Then C ∈ C ⇔ CHT = 0

β ∈ GF (2m) ⇒ β = a0 + a1x + . . . am−1 xm−1 a0, . . . , am−1 ∈ GF (2) n = 7, α ∈ GF (8)

9-9

H =

1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 0 1 1

2) R.S. codes : Take n = q − 1

n = q − 1 C = {c(x) : c(α) = c(α2) . . . c(αd−1) = 0}

The generator polynomial for this code is
g(x) = (x − α)(x − α2) . . . (x − αd−1)α is primitive

Ex : Prove that g(x) is the generator polynomial of C
deg g(x) = n − k = d − 1
⇒ d = n − k + 1
Therefore, we have an (n, k, n − k + 1) MDS code

R.S. codes are optimal in this sense

Example : 3 error correcting RS code over GF (11)
n = q − 1 = 10 d = 7 k = n − d + 1 = 10 − 7 + 1 = 4
(10, 4, 7) RS code over GF (11).

g(x) = (x − α)(x − α2)(x − α3)(x − α∗)(x − α5)(x − α6)
2 is a primitive element
= (x − 2)(x − 4)(x − 8)(x − 5)(x − 10)(x − 9)
= x6 + 6x5 + 5x4 + 7x3 + 2x2 + 8x + 2

EX : dual of an MDS code is dual : Hint columns are linearly dependent. ⇔ rows
are linearly dependent.

Real-life examples :

music CD standard RS codes are (32, 28) and (28, 24) double error correcting codes over
GF (256).
NASA standard RS code is a (255, 223, 33) code.

Review : n, q co-prime, n|qm − 1. β ∈ GF (qm) has order n. A (n, k) BCH code of
design d is defined as

C = {c(x) : c(β) = . . . c(βd−1)} = 0

9-10

This definition is useful in deriving the distance structure of the code. The obvious
questions to ask are

1) Encoding : need to find the generator polynomial

2) Decoding : will not be covered. PGZ decoder described in section 6.6 is an extension
of the 2εc we described earlier. Peterson - Gorenstein - Zierler

Minimal polynomials : Let α ∈ GF (qm). The monic polynomial of smallest degree
over GF (q) with α as a zero is called the minimal polynomial of α over GF (q). This is
a slight generalization of the definition given previously where q was equal to p.

Recall : Existence and uniqueness, primality

Lemma : Let f(x) be the minimal polynomial of α ∈ GF (qm). Suppose g(x) is a
polynomial over GF (q) such that g(α) = 0. Then f(x)|g(x)

Proof : g(x) = f(x)Q(x) + r(x) where deg r(x) < deg f(x)
g(α) = 0 ⇒ r(α) = g(α) − f(α)Q(α) = 0. Hence r(x) must be 0. Alternate Proof :
Appal to primarity of f(x).

Primitive polynomial The minimal polynomial of a primitive element is called prim-
itive polynomial. Suppose α is a primitive element of GF (qm) and p(x) is the minimal
polynomial of α over GF (q). Then GF (qm) ∼ GF (q)[x]/p(x).

The polynomial x ∈ GFq[x]/p(x) is the primitive element of GF (q)[x]/p(x)

Corr : If p(β) = 0 and p(x) is prime, then p(x) is the minimal polynomial of β.

Theorem : Consider a BCH code with zeros at β, β2, . . . , βd−1. Let fk(x) be the minimal
polynomial of βk ∈ GF (qm−1) over GF (q)[x]. Then the generator polynomial is given by

g(x) = LCM(f1(x), f2(x) . . . , fd−1(x))

Proof :

c(αk) = 0 ⇒ fk(x)|c(x) 1 ≤ k ≤ d − 1

⇒ g(x) = LCM(f1(x), . . . , fk(x)|c(x) by UPF

9-11

Therefore deg.g(x) ≤ deg c(x) ∀ c(x) ∈ C
Also g(x) ∈ C
Therfore g(x) is the generator polynomial

Finding the generator polynomials reduces to finding the minimal polynomials of the
zeros of the generator polynomial.

Brute force approach : Factorize xn − 1 into its prime polynomials over GF (q)[x]

xn − 1 = b1(x)b2(x) . . . bl(x)

Since g(x)|xn − 1, g(x) has to be a product of a subset of these factors. g(x) is zero
for x = β, β2, . . . , βd−1.

We know that g(βk) = 0 ⇒ fk(x) is a factor of g(x) and hence of xn − 1. By Unique
Prime Factorization fk(x) must be equal to one of the bj(x) 1 ≤ j ≤ l.

We only need to find the polynomial bj(x) for which bj(β
k) = 0. Repeat this procedure to

find the minimal polynomials of all zeros and take their LCM to find the generator matrix.

Problem : factorizing xn − 1 is hard

Theorem : Let p be the characteristic of GF (q). Let f(x) be a polynomial over

GF (q).f(x) =
n
∑

i=o
fix

i fi ∈ GF (q)

Then f(x)pm

=
n
∑

i=0
f

pm

1 xipm ∀m

Proof :
(a + b)p = ap + bp

(a + b)p2

= (ap + bp)p = ap2

+ bp2

In general
(a + b)pm

= apm

+ bpm

(a + b + c)p = (a + b)p + cp = ap + bp + cp

(a + b + c)pm

= apm

+ bpm

+ cpm

In general

(
n
∑

i=0
ai)

pm

= a
pm

0 + a
pm

1 + . . . + apn

n .ai ∈ GF (q)

therefore f(x)pm

= (
∑n

i=0 fix
i)pm

= (f0x
0)pm

+ . . . (fnx
n)pm

=
n
∑

i=0
f

pm

i xipm

Corr : Suppose f(x) is a polynomial over GF (q)
Then f(x)q = f(xq)

9-12

Proof : f(x) is prime. If we show that f(βq) = 0, then we are done. Suppose g(x) is
the minimal polynomial of βq. Then f(βq) = 0 ⇒ g(x)|f(x). f(x) prime ⇒ g(x) = f(x)

Now,

f(x)q = [
r
∑

i=0
fix

1]q r = degf(x) because q = pm

=
r
∑

i=0
f

q
i xiq fi ∈ GF (q) ⇒ f

q
i = fi

=
r
∑

i=0
fix

iq = f(xq)

Thereforef(βq) = f(β)q = 0

Conjugates : The conjugates of β over GF (q) are the zeros of the minimal polyno-
mial of β over GF (q) (includes β itself)

Theorem : The conjugates of β over GF (q) are β, βq, βq2

, . . . , βqr−1

where r is the least positive integer such that βqr

= β

First we check that βqk

are indeed conjugates of β

f(β) = 0 ⇒ f(βq) = 0 ⇒ f(βq2

) = 0 and so on
Therefore f(β) = 0 ⇒ f(βqk

) = 0 Repeatedly use the fact that f(x)q = f(xq)

Let f(x) = (x − β)(x − βq) . . . (x − βqr−1

)

The minimal polynomial of β has zeros at β, βq, . . . , βqr−1

Therefore f(x) = (x − β)(x − βq) . . . (x − βqr−1

)| minimal polynomial of β over GF (q)

If we show that f(x) ∈ GF (q)[x], then f(x) will be the minimal polynomial and hence
β, βq, . . . , βqr−1

are the only conjugates of β

f(x)q = (x − β)q(x − βq)q . . . (x − βqr−1

)q

= (xq − βq)(xq − βq2

) . . . (xq − βqr

)

= (xq − β)(xq − βq) . . . (x − βqr−1

)
= f(xq)

But f(x)q = f
q
0 + f1x

q + . . . + f q
r xrq

&f(xq) = f0 + f1x
q + . . . + frx

rq

Equating the coefficients, we have f
q
i = fi

⇒ fi ∈ GF (q) ⇒ f(x) ∈ GF (q)[x].

Examples :
GF (4) = {0, 1, 2, 3}

9-13

Conjugates of 2 in GF (2) are {2, 22} = {2, 3}

Therefore minimal polynomial of 2 and 3 is
(x − 2)(x − 3) = x2 + (2 + 3)x + 2 × 3

= x2 + x + 1
GF (8) = {0, 1, 2, . . . , 7} = {0, 1, α, x + 1, . . . , α2 + α + 1}

The conjugates of 2 in GF (2) are {2, 22, 24} and the minimal polynomial is x3 + x + 1

Cyclic codes are often used to correct burst errors and detect errors.

A cyclic burst of length t is a vector whose non-zero components are among t cycli-
cally consecutive components, the first and last of which are non-zero.

We can write such an errorword as follows :

e(x) = xib(x) mod xn − 1

where deg b(x) = t − 1 and bo 6= 0

In the setup we have considered so far, the optimal decoding procedure is nearest neigh-
bor decoding. For cyclic codes this reduces to calculating the syndrome and then doing
a look up (at least conceptually). Hence a cyclic code which corrects burst errors must
have syndrome polynomials that are distinct for each correctable error pattern.

Suppose a linear code (not necessarily cyclic) can correct all burst errors of length t

or less. Then it cannot have a burst of length 2t or less as a codeword. A burst of length
t could change the codeword to a burst pattern of length t or less which could also be
obtained by a burst pattern of length ≤ t operating on the all zero codeword.

Rieger Bound : A linear block code that corrects all burst errors of length t or less
must satisfy

n − k ≥ 2t

Proof : Consider the coset decomposition of the code #cosets = qn−k. No codeword is
burst of length t. Consider two vectors which are non zero in their first 2t components.
d(c1, c2) ≤ 2t ⇒ c1 − c2 6∈ C. c1 − c2 is a burst of length ≤ 2t ⇒ c1 − c2 6∈ C
⇒ c1 and c2 are in different cosets.

Therefore #cosets ≥ #n − tuples different in their first 2t components

9-14

Therefore qn−k ≥ q2t

⇒ n − k ≥ 2t

For small n and t, good error-correcting cyclic codes have found by computer search.
These can be augmented by interleaving.
Section 5.9 contains more details.

g(x) = x6 + x3 + x2 + x + 1 n − k = 6 2t = 6

Cyclic codes are also used extensively in error detection where they are often called
cyclic redundancy codes.

The generator polynomial for these codes of the form

g(x) = (x + 1) p(x)

where p(x) is a primitive polynomial of degree m. The blocklength n = 2m − 1 and k =
2m − 1− (m + 1). Almost always, these codes are shortened considerably. The two main
advantages of these codes are :

1) error detection is computing the syndrome polynomial which can be efficiency im-
plemented using shift registers.

2) m = 32 (232 − 1, 232 − 33)
good performance at high rate

x + 1|g(x) ⇒ x + 1|c(x) ⇒ c(1) = 0, so the codewords have even weight.

p(x)|c(x) ⇒ c(x) = 0 ⇒ c(x) are also Hamming codewords. Hence C is the set of
even weight codewords of a Hamming code dmin = 4

Examples

CRC − 16 : g(x) = (x + 1)(x15 + x + 1) = x16 + x15 + x2 + 1

CRC − CCITT g(x) = x16 + x12 + x5 + 1

9-15

Error detection algorithm : Divide senseword v(x) by g(x) to obtain the syndrome
polynomial (remainder) s(x). s(x) 6= 0 implies an error has been detected.

No burst of length less than n − k is a codeword.

e(x) = xib(x) mod xn − 1 deg b(x) < n − k

s(x) = e(x) mod g(x)
= xib(x) mod g(x)
= [xi mod g(x)] . [b(x) mod g(x)] mod g(x)

s(x) = 0 ∗
⇒ b(x) mod g(x) = 0 which is impossible if deg b(x) < deg g(x)

∗ g(x) 6 / xi Otherwise g(x)|xi ⇒ g(x)|xi − xn−i

⇒ g(x)|xn

But g(x)|xn − 1

If n − k = 32 every burst of length less than 32 will be detected.
We looked at both source coding and error control coding in this course.

Probalchstic techniques like turbo codes and trellis codes were not covered.

Modulation, lossy coding.

9-16

E2 231: Data Communication Systems January 7, 2005

Homework 1

1. In communication systems, the two primary resource constraints are transmitted
bandwidth and channel bandwidth. For example, the capacity (in bits/s) of a band-
limited additive white Gaussian noise channel is given by

C = W log2(1 +
P

N0W
)

where W is the bandwidth, N0

2
is the two-sided power spectral density and P is the signal

power. Find the minimum energy required to transmit a signal bit over this channel. Take
W = 1, N0 = 1.

(Hint: Energy = Power×Time)

2. Assume that there are exactly 21.5n equally likely, grammatically correct strings of n

characters, for every n (this is, of course, only approximately true). What is then the
minimum bit-rate required to transmit spoken English? You can make any reasonable
assumption about how fast people speak, language structure and so on. Compare this
with the 64 Kbps rate bit-stream produced by sampling speech 8000 times/s and then
quantizing each sample to one of 256 levels.

3. Consider the so-called Binary Symmetric Channel (BSC) shown below. It shows that
bits are erroneously received with probability p. Suppose that each bit is transmitted
several times to improve reliability (Repetition Coding). Also assume that, at the input,
bit are equally likely to be 1 or 0 and that successive bits are independent of each other.
What is the improvement in bit error rate with 3 and 5 repetitions, respectively?

0

1

0

1

1−p

1−p

p

p

Figure 1: Binary Symmetric Channel

1-1

E2 231: Data Communication Systems January 17, 2005

Homework 2

1. Suppose f(x) be a strictly convex function over the interval (a, b). Let λk, 1 ≤ k ≤ N

be a sequence of non-negative real numbers such that
∑N

k=1 λk = 1. Let xk, 1 ≤ k ≤ N,

be a sequence of numbers in (a, b), all of which are not equal. Show that

a) f(
∑N

k=1 λkxk) <
∑N

k=1 λkf(xk)

b) Let X be a discrete random variable. Suppose Ef(X) = f(EX). Use Part(a) to
show that X is a constant.

2-8. Solve the following problems from Chapter 5 of Cover and Thomas : 4, 6, 11, 12,
15, 18 and 22.

9. Solve Parts (a) and (b) of 5.26.

2-1

E2 231: Data Communication Systems February 3, 2005

Homework 3

1. A random variable X is uniformly distributed between -10 and +10. The probability
density function for X is given by

fX(x) =

{

1
20

−10 ≤ x ≤ 10
0 otherwise

Suppose Y = X2. What is the probability density function of Y?

2. Suppose X1, X2, . . . , XN are independent and identically distributed continuous ran-
dom variables. What is the probability that X1 = min(X1, X2, . . . , XN).
(Hint: Solve for N = 2 and generalize)

3-6. Solve the following problems from Chapter 3 of Cover and Thomas : 1, 2, 3 and 7.

7-12. Solve the following problems from Chapter 4 of Cover and Thomas : 2 (Hint:
H(X, Y) = H(Y, X)), 4, 8, 10, 12 and 14.

3-1

E2 231: Data Communication Systems February 18, 2005

Homework 4

1-4. Solve the following problems from Chapter 4 of Cover and Thomas : 2, 4, 9, and
10.

4-1

E2 231: Data Communication Systems March 6, 2005

Homework 5

1.

a) Perform a Lempel-Ziv compression of the string given below. Assume a window
size of 8.

000111000011100110001010011100101110111011110001101101110111000010001100011

b) Assume that the above binary string is obtained from a discrete memoryless source
which can take 8 values. Each value is encoded into a 3-bit segment to generate the
given binary string. Estimate the probability of each 3-bit segment by its relative
frequency in the given binary string. Use this probability distribution to devise a
Huffman code. How many bits do you need to encode the given binary string using
this Huffman code?

2.

a) Show that a code with minimum distance dmincan correct any pattern of p erasures
if

dmin ≥ p + 1

b) Show that a code with minimum distance dmincan correct any pattern of p erasures
and t errors if

dmin ≥ 2t + p + 1

3. For any q-ary (n.k) block code with minimum distance 2t + 1 or greater, show that
the number of data symbols satisfy

n − k ≥ logq

[

1 +

(

n

1

)

(q − 1) +

(

n

2

)

(q − 1)2 + . . . +

(

n

t

)

(q − 1)t

]

4. Show that only one group exists with three elements. Construct this group and show
that it is abelian.

5.

a) Let G be a group and a
′

denote the inverse of any element a ∈ G. Prove that
(a ∗ b)

′

= b
′ ∗ a

′

.

5-1

b) Let G be an arbitrary finite group (not necessarily abelian). Let h be an element
of G and H be the subgroup generated by h. Show that H is abelian

6-15. Solve the following problems from Chapter 2 of Blahut : 5, 6, 7, 11, 14, 15, 16, 17,
18 and 19.

16. (Putnam, 2001) Consider a set S and a binary operation ∗, i. e., for each a, b ∈ S,
a ∗ b ∈ S. Assume (a ∗ b) ∗ a = b for all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

5-2

E2 231: Data Communication Systems March 14, 2005

Homework 6

1-6. Solve the following problems from Chapter 3 of Blahut : 1, 2, 4, 5, 11 and 13.

7. We defined maximum distance separable (MDS) codes as those linear block codes
which satisfy the Singleton bound with equality, i.e., d = n−k +1. Find all binary MDS
codes. (Hint: Two binary MDS codes are the repetition codes (n, 1, n) and the single
parity check codes (n, n − 1, 2). It turns out that these are the only binary MDS codes.
All you need to show now is that a binary (n, k, n− k +1) linear block code cannot exist
for k 6= 1, k 6= n − 1).

8. A perfect code is one for which there are Hamming spheres of equal radius about the
codewords that are disjoint and that completely fill the space (See Blahut, pp. 59-61
for a fuller discussion). Prove that all Hamming codes are perfect. Show that the (9,7)
Hamming code over GF(8) is a perfect as well as MDS code.

6-1

E2 231: Data Communication Systems March 28, 2005

Homework 7

1-12. Solve the following problems from Chapter 4 of Blahut : 1, 2, 3, 4, 5, 7, 9, 10, 12,
13, 15 and 18.

13. Recall that the Euler totient function, φ(n), is the number of positive numbers less
than n, that are relatively prime to n. Show that

a) If p is prime and k >= 1, then φ(pk) = (p − 1)pk−1.

b) If n and m are relatively prime, then φ(mn) = φ(n)φ(n).

c) If the factorization of n is
∏

i q
ki

i , then φ(n) =
∏

i(qi − 1)qki−1
i

14. Suppose p(x) is a prime polynomial of degree m > 1 over GF (q). Prove that p(x)
divides xqm−1 − 1. (Hint: Think minimal polynomials and use Theorem 4.6.4 of Blahut)
15. In a finite field with characteristic p, show that

(a + b)p = ap + bp, a, b ∈ GF (q)

7-1

E2 231: Data Communication Systems April 6, 2005

Homework 8

1. Suppose p(x) is a prime polynomial of degree m > 1 over GF (q). Prove that p(x)
divides xqm−1 − 1. (Hint: Think minimal polynomials and use Theorem 4.6.4 of Blahut)

2-9. Solve the following problems from Chapter 5 of Blahut : 1, 5, 6, 7, 10, 13, 14, 15.

10-11. Solve the following problems from Chapter 6 of Blahut : 5, 6

12. This problem develops an alternate view of Reed-Solomon codes. Suppose we con-
struct a code over GF (q) as follows. Take n = q (Note that this is different from the code
presented in class where n was equal to q−1). Suppose the dataword polynomial is given
by a(x)=a0+a1x+. . .+ak−1x

k−1. Let α1, α2, . . ., αq be the q different elements of GF (q).
The dataword polynomial is then mapped into the n-tuple (a(α1), a(α2), . . . , a(αq). In
other words, the jth component of the codeword corresponding to the data polynomial
a(x) is given by

a(αj) =
k−1
∑

i=0

aiα
i
j ∈ GF (q), 1 ≤ j ≤ q

a) Show that the code as defined is a linear block code.

b) Show that this code is an MDS code. It is often called an extended RS code.

c) Suppose this code is punctured in r <= q−k = d−1 places (r components of each
codeword are removed) to yield an (n = q − r, k, d = n − k + 1 − r) code. Show
that the punctured code is also an MDS code.

Hint: a(x) is a polynomial of order less than or equal to k − 1. By the Fundamental
Theorem of Algebra, a(x) can have at most k − 1 zeros. Therefore, a non-zero codeword
can have at most k − 1 symbols equal to 0. Hence d >= n − k + 1. The proof follows.

8-1

E2 231: Data Communication Systems February 16, 2004

Midterm Exam 1

1.

a) Find the binary Huffman code for the source with probabilities (1

3
, 1

5
, 1

5
, 2

15
, 2

15
).

(2 marks)

b) Let l1, l2, . . . , lM be the codeword lengths of a binary code obtained using the Huff-
man procedure. Prove that

M
∑

k=1

2−lk = 1

(3 marks)

2. A code is said to be suffix free if no codeword is a suffix of any codeword.

a) Show that suffix free codes are uniquely decodable. (2 marks)

b) Suppose you are asked to develop a suffix free code for a discrete memoryless source.
Prove that the minimum average length over all suffix free codes is the same as the
minimum average length over all prefix free codes. (2 marks)

c) State a disadvantage of using suffix free codes. (1 mark)

3. Let X1, X2, . . . be an i.i.d sequence of discrete random variables with entropy H, taking
values in the set X . Let

Bn(s) = {xn ∈ X n : p(xn) ≥ 2−ns}

denote the subset of n-tuples which occur with probability greater than 2−ns

a) Prove that |Bn(s)| ≤ 2ns. (2 marks)

b) For any ε > 0, show that limn→∞
Pr(Bn(H+ε)) = 1 and limn→∞

Pr(Bn(H−ε)) = 0
(3 marks)

4.

a) A fair coin is flipped until the first head occurs. Let X denote the number of flips
required. Find the entropy of X. (2 marks)

b) Let X1, X2, . . . be a stationary stochastic process. Show that (3 marks)

H(X1, X2, . . . , Xn)

n
≤

H(X1, X2, . . . , Xn−1)

n − 1

1-1

E2 231: Data Communication Systems March 29, 2004

Midterm Exam 2

1.

a) For any q-ary (n, k) block code with minimum distance 2t+1 or greater, show that
the number of data symbols satisfies

n − k ≥ log
q

[

1 +

(

n

1

)

(q − 1) +

(

n

2

)

(q − 1)2 + . . . +

(

n

t

)

(q − 1)t

]

(2 marks)

b) Show that a code with minimum distance dmin can correct any pattern of p erasures
and t errors if

dmin ≥ 2t + p + 1

(3 marks)

2.

a) Let S5 be the symmetric group whose elements are the permutations of the set
X = {1, 2, 3, 4, 5} and the group operation is the composition of permutations.

• How many elements does this group have? (1 mark)

• Is the group abelian? (1 mark)

b) Consider a group where every element is its own inverse. Prove that the group is
abelian. (3 marks)

3.

a) You are given a binary linear block code where every codeword c satisfies cAT = 0,
for the matrix A given below.

A =

1 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0

• Find the parity check matrix and the generator matrix for this code.(2 marks)

• What is the minimum distance of this code? (1 mark)

2-1

b) Show that a linear block code with parameters, n = 7, k = 4 and dmin = 5, cannot
exist. (1 mark)

c) Give the parity check matrix and the generator matrix for the (n, 1) repetition
code. (1 mark)

4.

a) Let α be an element of GF (64). What are the possible values for the multiplicative
order of α? (1 mark)

b) Evaluate (2x2 + 2)(x2 + 2) in GF (3)[x]/(x3 + x2 + 2). (1 mark)

c) Use the extended Euclidean algorithm to find the multiplicative inverse of 9 in
GF (13). (2 marks)

d) Suppose p is prime and α is an element of GF (pm), m > 1. Show that αp = α

implies that α belongs to the subfield GF (p). (2 marks)

2-2

E2 231: Data Communication Systems April 22, 2004

Final Exam

1. For each statement given below, state whether it is true or false. Provide brief
(1-2 lines) explanations.

a) The source code {0, 01} is uniquely decodable. (1 mark)

b) There exists a prefix-free code with codeword lengths {2, 2, 3, 3, 3, 4, 4, 4}. (1 mark)

c) Suppose X1, X2, . . . , Xn are discrete random variables with the same entropy value.
Then H(X1, X2, . . . , Xn) <= nH(X1). (2 marks)

d) The generator polynomial of a cyclic code has order 7. This code can detect all
cyclic bursts of length at most 7. (1 mark)

2. Let {p1 > p2 >= p3 >= p3} be the symbol probabilities for a source which can assume
four values.

a) What are the possible sets of codeword lengths for a binary Huffman code for this
source? (1 mark)

b) Prove that for any binary Huffman code, if the most probable symbol has proba-
bility p1 > 2

5
, then that symbol must be assigned a codeword of length 1.(2 marks)

c) Prove that for any binary Huffman code, if the most probable symbol has proba-
bility p1 < 1

3
, then that symbol must be assigned a codeword of length 2.(2 marks)

3. Let X0, X1, X2, . . . , be independent and indentically distributed random variables
taking values in the set X = {1, 2, . . . , m} and let N be the waiting time to the next
occurence of X0, where N = minn{Xn = X0}.

a) Show that EN = m. (2 marks)

b) Show that E log(N) ≤ H(X). (3 marks)

Hint: EN =
∑

n>=1 P (N >= n), EY = E(EY |X).

4. Consider a sequence of independent and identically distributed binary random vari-
ables, X1, X2, . . . , Xn. Suppose Xk can either be 1 or 0. Let A(n)

ǫ be the typical set
associated with this process.

a) Suppose P (Xk = 1) = 0.5. For each ǫ and each n, determine |A(n)
ǫ | and P (A(n)

ǫ).
(1 mark)

1-1

b) Suppose P (Xk = 1) = 3
4
. Show that

H(Xk) = 2 − 3

4
log 3

−1

n
log P (X1, X2, . . . , Xn) = 2 − Z

n
log 3

where Z is the number of ones in X1, X2, . . . , Xn. (2 marks)

c) For P (Xk = 1) = 3
4
, n = 8 and ǫ = 1

8
log 3, compute |A(n)

ǫ | and P (A(n)
ǫ). (2 marks)

5. Imagine you are running the pathology department of a hospital and are given 5 blood
samples to test. You know that exactly one of the samples is infected. Your task is to
find the infected sample with the minimum number of tests. Suppose the probability
that the kth sample is infected is given by (p1, p2, . . . , p5) = (4

12
, 3

12
, 2

12
, 2

12
, 1

12
).

a) Suppose you test the samples one at a time. Find the order of testing to minimize
the expected number of tests required to determine the infected sample. (1 mark)

b) What is the expected number of tests required? (1 mark)

c) Suppose now that you can mix the samples. For the first test, you draw a small
amount of blood from selected samples and test the mixture. You proceed, mixing
and testing, stopping when the infected sample has been determined. What is the
minimum expected number of tests in this case? (2 marks)

d) In part (c), which mixture will you test first? (1 mark)

6.

a) Let C be a binary Hamming code with n = 7 and k = 4. Suppose a new code C
′

is formed by appending to each codeword x̄ = (x1, . . . , x7) ∈ C, an over-all parity
check bit equal to x1+x2 + . . .+x7. Find the parity check matrix and the minimum
distance for the code C

′

? (2 marks)

b) Show that in a binary linear block code, for any bit location, either all the codewords
contain 0 in the given location or exactly half have 0 and half have 1 in the given
location. (3 marks)

7.

a) Suppose α and β are elements of order n and m respectively, of a finite Abelian
group and that GCD(n, m) = 1. Prove that the order of the element α ∗ β is nm.

(2 marks)

1-2

b) Prove that f(x) = x3 + x2 + 1 is irreducible over GF (3). (1 mark)

c) What are the multiplicative orders of the elements of GF (3)/x3 +x2 +1 ? (1 mark)

8.

a) Suppose α is a primitive element of GF (pm), where p is prime. Show that all the
conjugates of α (with respect to GF (p) are also primitive. (2 marks)

b) Find the generator polynomial for a binary double error correcting code of block-
length n = 15. Use a primitive α and the primitive polynomial p(x) = x4 + x + 1.

(2 marks)

c) Suppose the code defined in part(b) is used and the received senseword is equal to
x9 + x8 + x7 + x5 + x3 + x2 + x. Find the error polynomial. (1 mark)

9. A linear (n, k, d) block code is said to be maximum distance seperable (MDS) if
dmin = n − k + 1.

a) Construct an MDS code over GF (q) with k = 1 and k = n − 1. (1 mark)

b) Suppose an MDS code is punctured in s <= n− k = d− 1 places (s check symbols
are removed) to yield an (n = q − s, k) code. Show that the punctured code is also
an MDS code. (2 marks)

c) Suppose C is an MDS code over GF (2). Show that no MDS code can exist for
2 ≤ k ≤ n − 2. (2 marks)

10.

a) Find the generator polynomial of a Reed-Solomon (RS) code with n = 10 and
k = 7. What is the minimum distance of this code? (2 marks)

b) Consider an (n, k) RS code over GF (q). Suppose each codeword (c0, c2, . . . , cn−1)
is extended by adding an overall parity check cn given by

cn = −
n−1
∑

j=0

cj

Show that the extended code is an (n + 1, k) MDS code. (3 marks)

1-3

	Learning Material - ITC.pdf
	Learning Material - Information Theory and Coding
	Syllabus
	Course Outline -I
	Communication System Block
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Test Problem 1
	Test Problem 2
	Test Problem 3
	Test Problem 4
	Test Problem 5
	Test Problem 6
	Test Problem 7
	Test Problem 8
	Test Problem 9
	Test Problem 10
	Test Problem 11

	Back to main menu

